We recently discovered a novel N-aryl tetracyclic dicarboximide MM0299 () with robust activity against glioma stem-like cells that potently and selectively inhibits lanosterol synthase leading to the accumulation of the toxic shunt metabolite 24(),25-epoxycholesterol. Herein, we delineate a systematic and comprehensive SAR study that explores the structural space surrounding the N-aryl tetracyclic dicarboximide scaffold. A series of 100 analogs were synthesized and evaluated for activity against the murine glioma stem-like cell line Mut6 and for metabolic stability in mouse liver S9 fractions.
View Article and Find Full Text PDFGlioblastoma (GBM) is an aggressive adult brain cancer with few treatment options due in part to the challenges of identifying brain-penetrant drugs. Here, we investigated the mechanism of MM0299, a tetracyclic dicarboximide with anti-glioblastoma activity. MM0299 inhibits lanosterol synthase (LSS) and diverts sterol flux away from cholesterol into a "shunt" pathway that culminates in 24(S),25-epoxycholesterol (EPC).
View Article and Find Full Text PDFBackground: Historically, creating patient-derived models of lower-grade glioma (LGG) has been challenging, contributing to few experimental platforms that support laboratory-based investigations of this disease. Although organoid modeling approaches have recently been employed to create in vitro models of high-grade glioma (HGG), it is unknown whether this approach can be successfully applied to LGG.
Methods: In this study, we developed an optimized protocol for the establishment of organoids from LGG primary tissue samples by utilizing physiologic (5%) oxygenation conditions and employed it to produce the first known suite of these models.
5-aminolevulinic acid (5-ALA) is a porphyrin precursor in the heme synthesis pathway. When supplied exogenously, certain cancers consume 5-ALA and convert it to the fluorogenic metabolite protoporphyrin IX (PpIX), causing tumor-specific tissue fluorescence. Preoperative administration of 5-ALA is used to aid neurosurgical resection of high-grade gliomas such as glioblastoma, allowing for increased extent of resection and progression free survival for these patients.
View Article and Find Full Text PDFSilver compounds have been used extensively for wound healing because of their antimicrobial properties, but high concentrations of silver are toxic to mammalian cells. We designed a peptide that binds silver and releases only small amounts of this ion over time, therefore overcoming the problem of silver toxicity. Silver binding was achieved through incorporation of an unnatural amino acid, 3'-pyridyl alanine (3'-PyA), into the peptide sequence.
View Article and Find Full Text PDFIntegrin αIIbβ3, a transmembrane heterodimer, mediates platelet aggregation when it switches from an inactive to an active ligand-binding conformation following platelet stimulation. Central to regulating αIIbβ3 activity is the interaction between the αIIb and β3 extracellular stalks, which form a tight heterodimer in the inactive state and dissociate in the active state. Here, we demonstrate that alanine replacements of sensitive positions in the heterodimer stalk interface destabilize the inactive conformation sufficiently to cause constitutive αIIbβ3 activation.
View Article and Find Full Text PDFAmyloid-like fibrils assembled from de novo designed peptides lock ligands in a conformation optimal for metal binding and catalysis in a manner similar to how metalloenzymes provide proper coordination environment through fold. These supramolecular assemblies efficiently catalyze p-nitrophenyl ester hydrolysis in the presence of zinc and phenol oxidation by dioxygen in the presence of copper. The resulting heterogeneous catalysts are inherently switchable, as addition and removal of the metal ions turns the catalytic activity on and off, respectively.
View Article and Find Full Text PDF