Publications by authors named "Alex Sirp"

AMP-activated protein kinase (AMPK) is an energy-sensing serine/threonine kinase involved in metabolic regulation. It is phosphorylated by the upstream liver kinase B1 (LKB1) or calcium/calmodulin-dependent kinase kinase 2 (CaMKKβ). In cultured cells, AMPK activation correlates with LKB1 activity.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) promotes the survival and functioning of neurons in the central nervous system and contributes to proper functioning of many non-neural tissues. Although the regulation and role of BDNF have been extensively studied, a rigorous analysis of the expression dynamics of and its receptors and is lacking. Here, we have analyzed more than 3,600 samples from 18 published RNA sequencing datasets, and used over 17,000 samples from GTEx, and ~ 180 samples from BrainSpan database, to describe the expression of in the developing mammalian neural and non-neural tissues.

View Article and Find Full Text PDF

Transcription factor 4 (TCF4) belongs to the class I basic helix-loop-helix family of transcription factors (also known as E-proteins) and is vital for the development of the nervous system. Aberrations in the gene are associated with several neurocognitive disorders such as schizophrenia, intellectual disability, post-traumatic stress disorder, depression, and Pitt-Hopkins Syndrome, a rare but severe autism spectrum disorder. Expression of the human gene can produce at least 18 N-terminally distinct protein isoforms, which activate transcription with different activities and thus may vary in their function during development.

View Article and Find Full Text PDF

Transcription factor 4 (TCF4) is a basic helix-loop-helix transcription factor essential for neurocognitive development. The aberrations in TCF4 are associated with neurodevelopmental disorders including schizophrenia, intellectual disability, and Pitt-Hopkins syndrome, an autism-spectrum disorder characterized by developmental delay. Several disease-associated missense mutations in TCF4 have been shown to interfere with TCF4 function, but for many mutations, the impact remains undefined.

View Article and Find Full Text PDF

Huntington's disease (HD) is an inherited neurodegenerative disorder with onset of characteristic motor symptoms at midlife, preceded by subtle cognitive and behavioral disturbances. Transcriptional dysregulation emerges early in the disease course and is considered central to HD pathogenesis. Using wild-type (wt) and HD knock-in mouse striatal cell lines we observed a HD genotype-dependent reduction in the protein levels of transcription factor 4 (TCF4), a member of the basic helix-loop-helix (bHLH) family with critical roles in brain development and function.

View Article and Find Full Text PDF

The CTG trinucleotide repeat (TNR) expansion in Transcription factor 4 (TCF4) intron 3 is the main cause of Fuchs' endothelial corneal dystrophy (FECD) and may confer an increased risk of developing bipolar disorder (BD). Usage of alternative 5' exons for transcribing the human TCF4 gene results in numerous TCF4 transcripts which encode for at least 18 N-terminally different protein isoforms that vary in their function and transactivation capability. Here we studied the TCF4 region containing the CTG TNR and characterized the transcription initiation sites of the nearby downstream 5' exons 4a, 4b and 4c.

View Article and Find Full Text PDF

Mammalian transcription factor 4 (TCF4) has been linked to schizophrenia and intellectual disabilities, such as Pitt-Hopkins syndrome (PTHS). Here, we show that similarly to mammalian TCF4, fruit fly orthologue Daughterless (Da) is expressed widely in the brain. Furthermore, silencing of , using several central nervous system-specific Gal4 driver lines, impairs appetitive associative learning of the larvae and leads to decreased levels of the synaptic proteins Synapsin (Syn) and Discs large 1 (Dlg1), suggesting the involvement of Da in memory formation.

View Article and Find Full Text PDF

BDNF signaling via its transmembrane receptor TrkB has an important role in neuronal survival, differentiation, and synaptic plasticity. Remarkably, BDNF is capable of modulating its own expression levels in neurons, forming a transcriptional positive feedback loop. In the current study, we have investigated this phenomenon in primary cultures of rat cortical neurons using overexpression of dominant-negative forms of several transcription factors, including CREB, ATF2, C/EBP, USF, and NFAT.

View Article and Find Full Text PDF