Introduction: YouTube is a popular social media used by youth and has electronic cigarette (e-cigarette) content. We used machine learning to identify the content of e-cigarette videos, featured e-cigarette products, video uploaders, and marketing and sales of e-cigarette products.
Methods: We identified e-cigarette content using 18 search terms (eg, e-cig) using fictitious youth viewer profiles and predicted four models using the metadata as the input to supervised machine learning: (1) video themes, (2) featured e-cigarette products, (3) channel type (ie, video uploaders) and (4) discount/sales.