Publications by authors named "Alex Saywell"

On-surface synthesis of functional molecular structures provides a route to the fabrication of materials tailored to exhibit bespoke catalytic, (opto)electronic, and magnetic properties. The fabrication of graphene nanoribbons via on-surface synthesis, where reactive precursor molecules are combined to form extended polymeric structures, provides quasi-1D graphitic wires that can be doped by tuning the properties/composition of the precursor molecules. Here, we combine the atomic precision of solution-phase synthetic chemistry with on-surface protocols to enable reaction steps that cannot yet be achieved in solution.

View Article and Find Full Text PDF

Graphene nanoribbons (GNRs), nanometre-wide strips of graphene, are promising materials for fabricating electronic devices. Many GNRs have been reported, yet no scalable strategies are known for synthesizing GNRs with metal atoms and heteroaromatic units at precisely defined positions in the conjugated backbone, which would be valuable for tuning their optical, electronic and magnetic properties. Here we report the solution-phase synthesis of a porphyrin-fused graphene nanoribbon (PGNR).

View Article and Find Full Text PDF

Strained macrocycles display interesting properties, such as conformational rigidity, often resulting in enhanced π-conjugation or enhanced affinity for non-covalent guest binding, yet they can be difficult to synthesize. Here we use computational modeling to design a template to direct the formation of an 18-porphyrin nanoring with direct meso-meso bonds between the porphyrin units. Coupling of a linear 18-porphyrin oligomer in the presence of this template gives the target nanoring, together with an unexpected 36-porphyrin ring by-product.

View Article and Find Full Text PDF

Rings of porphyrins mimic natural light-harvesting chlorophyll arrays and offer insights into electronic delocalization, providing a motivation for creating larger nanorings with closely spaced porphyrin units. Here, we demonstrate the first synthesis of a macrocycle consisting entirely of 5,15-linked porphyrins. This porphyrin octadecamer was constructed using a covalent six-armed template, made by cobalt-catalyzed cyclotrimerization of an H-shaped tolan with porphyrin trimer ends.

View Article and Find Full Text PDF

Natural light-harvesting systems absorb sunlight and transfer its energy to the reaction centre, where it is used for photosynthesis. Synthetic chromophore arrays provide useful models for understanding energy migration in these systems. Research has focused on mimicking rings of chlorophyll molecules found in purple bacteria, known as 'light-harvesting system 2'.

View Article and Find Full Text PDF

Molecular diffusion is a fundamental process underpinning surface-confined molecular self-assembly and synthesis. Substrate topography influences molecular assembly, alignment, and reactions with the relationship between topography and diffusion linked to the thermodynamic evolution of such processes. Here, we observe preferential adsorption sites for tetraphenylporphyrin (2H-TPP) on Au(111) and interpret nucleation and growth of molecular islands at these sites in terms of spatial variation in diffusion barrier driven by local atomic arrangements of the Au(111) surface (the 22× √3 "herringbone" reconstruction).

View Article and Find Full Text PDF

A thermally induced order-disorder transition of tetraphenylporphyrin (2-TPP) on Au(111) is characterised by scanning probe microscopy and X-ray photoelectron spectroscopy-based techniques. We observed that a transition from an ordered close-packed phase to a disordered diffuse phase is correlated with an on-surface cyclodehydrogenation reaction, and that additional heating of this diffuse phase gives rise to a single distinct nitrogen environment indicative of the formation of a Au-TPP species.

View Article and Find Full Text PDF

Polymeric structures based on porphyrin units exhibit a range of complex properties, such as nanoscale charge transport and quantum interference effects, and have the potential to act as biomimetic materials for light-harvesting and catalysis. These functionalities are based upon the characteristics of the porphyrin monomers, but are also emergent properties of the extended polymer system. Incorporation of these properties within solid-state devices requires transfer of the polymers to a supporting substrate, and may require a high-degree of lateral order.

View Article and Find Full Text PDF

Molecular surgery provides the opportunity to study relatively large molecules encapsulated within a fullerene cage. Here we determine the location of an HO molecule isolated within an adsorbed buckminsterfullerene cage, and compare this to the intrafullerene position of HF. Using normal incidence X-ray standing wave (NIXSW) analysis, coupled with density functional theory and molecular dynamics simulations, we show that both HO and HF are located at an off-centre position within the fullerene cage, caused by substantial intra-cage electrostatic fields generated by surface adsorption of the fullerene.

View Article and Find Full Text PDF

The electronic structure of a molecular quantum ring (stacks of 40-unit cyclic porphyrin polymers) is characterized via scanning tunneling microscopy and scanning tunneling spectroscopy. Our measurements access the energetic and spatial distribution of the electronic states and, utilizing a combination of density functional theory and tight-binding calculations, we interpret the experimentally obtained electronic structure in terms of coherent quantum states confined around the circumference of the π-conjugated macrocycle. These findings demonstrate that large (53 nm circumference) cyclic porphyrin polymers have the potential to act as molecular quantum rings.

View Article and Find Full Text PDF

The on-surface synthesis of covalently bonded materials differs from solution-phase synthesis in several respects. The transition from a three-dimensional reaction volume to quasi-two-dimensional confinement, as is the case for on-surface synthesis, has the potential to facilitate alternative reaction pathways to those available in solution. Ullmann-type reactions, where the surface plays a role in the coupling of aryl-halide functionalised species, has been shown to facilitate extended one- and two-dimensional structures.

View Article and Find Full Text PDF

In the last decade it has become possible to resolve the geometric structure of organic molecules with intramolecular resolution using high resolution scanning probe microscopy (SPM), and specifically using the subset of SPM known as noncontact atomic force microscopy (ncAFM). In world leading groups it has become routine not only to perform sub-molecular imaging of the chemical, electronic, and electrostatic properties of single molecules, but also to use this technique to track complex on-surface chemical reactions, investigate novel reaction products, and even synthesise new molecular structures one bond at a time. These developments represent the cutting edge of characterisation at the single chemical bond level, and have revolutionised our understanding of surface-based chemical processes.

View Article and Find Full Text PDF

On-surface synthesis provides a route for the production of 1D and 2D covalently bonded polymeric structures. Such reactions are confined to the surface of a substrate and the catalytic properties of the substrate are often utilised to initiate the reaction. Recent studies have focused on the properties of various crystallographic planes of metallic substrates, as well as native surface features such as step-edges, in an effort to provide control over the pathway of the reaction and the resultant products.

View Article and Find Full Text PDF

On-surface reactions based on Ullmann coupling are known to proceed on coinage-metal substrates (e.g. Au, Ag, Cu), with the chemistry of the surface strongly influencing the reaction progression.

View Article and Find Full Text PDF

On-surface reactions based on metal-catalysed Ullmann coupling have been successfully employed to synthesise a wide variety of covalently coupled structures. Substrate chemistry and topology are both known to effect the progression of an on-surface reaction; offering routes to control efficiency and selectivity. Here, we detail ultra-high vacuum scanning probe microscopy experiments showing that templating a catalytically active surface, via a supramolecular template, influences the reaction pathway of an on-surface Ullmann-type coupling reaction by inhibiting one potential intermediate structure and stabilising another.

View Article and Find Full Text PDF

Molecular machines are a key component in the vision of molecular nanotechnology and have the potential to transport molecular species and cargo on surfaces. The motion of such machines should be triggered remotely, ultimately allowing a large number of molecules to be propelled by a single source, with light being an attractive stimulus. Here, we report upon the photoinduced translation of molecular machines across a surface by characterizing single molecules before and after illumination.

View Article and Find Full Text PDF

One-dimensional polymer chains consisting of π-conjugated porphyrin units are formed via Glaser coupling on a Ag(111) surface. Scanning probe microscopy reveals the covalent structure of the products and their ordering. The conformational flexibility within the chains is investigated via a comparision of room temperature and cryogenic measurements.

View Article and Find Full Text PDF

Vernier templating exploits a mismatch between the number of binding sites in a template and a reactant to direct the formation of a product that is large enough to bind several template units. Here, we present a detailed study of the Vernier-templated synthesis of a 12-porphyrin nanoring. NMR and small-angle X-ray scattering (SAXS) analyses show that Vernier complexes are formed as intermediates in the cyclo-oligomerization reaction.

View Article and Find Full Text PDF

A second generation motorized nanocar was designed, synthesized, and imaged. To verify structural integrity, NMR-based COSY, NOESY, DEPT, HSQC, and HMBC experiments were conducted on the intermediate motor. All signals in (1)H NMR were unambiguously assigned, and the results were consistent with the helical structure of the motor.

View Article and Find Full Text PDF

The operation of a haptic device interfaced with a scanning tunneling microscope (STM) is presented here. The user moves the STM tip in three dimensions by means of a stylus attached to the haptic instrument. The tunneling current measured by the STM is converted to a vertical force, applied to the stylus and felt by the user, with the user being incorporated into the feedback loop that controls the tip-surface distance.

View Article and Find Full Text PDF

Single molecule magnets based on the dodecamanganese (III, IV) cluster with two different types of ligand (acetate and benzoate) have been studied on the Au(111) surface. Due to the non-volatile and fragile nature of the molecules, we have used ultra-high vacuum electrospray deposition to produce a series of surface coverages from a fraction of a monolayer to multilayer films in both cases. Synchrotron radiation based electron spectroscopy has been used to study the adsorption of the molecules on the Au(111) surface and the effect that this has on the oxidation states of the manganese atoms in the core.

View Article and Find Full Text PDF

Templates are widely used to arrange molecular components so they can be covalently linked into complex molecules that are not readily accessible by classical synthetic methods. Nature uses sophisticated templates such as the ribosome, whereas chemists use simple ions or small molecules. But as we tackle the synthesis of larger targets, we require larger templates-which themselves become synthetically challenging.

View Article and Find Full Text PDF