Publications by authors named "Alex S Yamashita"

Article Synopsis
  • - Pediatric high-grade gliomas often have gene fusions with receptor tyrosine kinase genes, such as NTRK, leading to high initial responses to treatment but eventual recurrence due to new mutations.
  • - Researchers created mouse models of gliomas driven by NTRK fusions to study how different genetic variations influence tumor characteristics and aggressiveness.
  • - While TRK kinase inhibitors improve survival rates in these mice, they do not eliminate the tumors, with recurrence likely due to ERK activation; combining these inhibitors with MEK inhibitors might enhance treatment effectiveness.
View Article and Find Full Text PDF

Pediatric-type high-grade gliomas frequently harbor gene fusions involving receptor tyrosine kinase genes, including neurotrophic tyrosine kinase receptor (NTRK) fusions. Clinically, these tumors show high initial response rates to tyrosine kinase inhibition but ultimately recur due to the accumulation of additional resistance-conferring mutations. Here, we developed a series of genetically engineered mouse models of treatment-naïve and -experienced NTRK1/2/3 fusion-driven gliomas.

View Article and Find Full Text PDF

Background: Cachexia is a wasting syndrome associated with systemic inflammation and metabolic disruption. Detection of the early signs of the disease may contribute to the effective attenuation of associated symptoms. Despite playing a central role in the control of metabolism and inflammation, the liver has received little attention in cachexia.

View Article and Find Full Text PDF

Background: Isocitrate Dehydrogenase 1/2 (IDH1/2) mutations are diagnostic for Astrocytoma or Oligodendroglioma, IDH-mutant. In these IDH-mutant gliomas, retinoic acid-related gene expression is commonly silenced by DNA hypermethylation. DNA demethylating agents can epigenetically reprogram IDH-mutant cells and reduce proliferation, likely by re-expression of silenced tumor suppressor pathways.

View Article and Find Full Text PDF

Background: Metabolic reprogramming is a common feature in cancer, and it is critical to facilitate cancer cell growth. and mutations (mut) are the most common genetic alteration in glioma grade II and III and secondary glioblastoma and these mutations increase reliance on glutamine metabolism, suggesting a potential vulnerability. In this study, we tested the hypothesis that the brain penetrant glutamine antagonist prodrug JHU-083 reduces glioma cell growth.

View Article and Find Full Text PDF

Background & Aims: The liver is the main organ regulating metabolism. In spite of that, few studies examine liver metabolism in cachexia, a wasting syndrome associated with increased morbidity and mortality in cancer. Cachexia induces major metabolic disruption, inflammation and fat and lean mass loss.

View Article and Find Full Text PDF

Background: Isocitrate deyhydrogenase (IDH) mutant glioma comprises the majority of grades II-III gliomas and nearly all secondary glioblastomas. These progressive gliomas arise from mutations in IDH1 or IDH2 that pathologically produce D-2-hydroxyglutarate (2HG), which interferes with cell reactions using alpha ketoglutarate, leading to a hypermethylated genome and epigenetic dysregulation of gene expression initiating tumorigenesis.

Methods: Human IDH1 wild type (wt) and IDH1 R132H cell lines and patient-derived xenografts (PDXs) were used to evaluate the FDA-approved DNA demethylating agent 5-azacytidine (5-aza).

View Article and Find Full Text PDF

Visceral obesity is frequently associated with the development of type 2 diabetes (T2D), a highly prevalent chronic disease that features insulin resistance and pancreatic -cell dysfunction as important hallmarks. Recent evidence indicates that the chronic, low-grade inflammation commonly associated with visceral obesity plays a major role connecting the excessive visceral fat deposition with the development of insulin resistance and pancreatic -cell dysfunction. Herein, we review the mechanisms by which nutrients modulate obesity-associated inflammation.

View Article and Find Full Text PDF

Background: Nc886 is a 102 bp non-coding RNA transcript initially classified as a microRNA precursor (Pre-miR-886), later as a divergent homologue of the vault RNAs (vtRNA 2-1) and more recently as a novel type of RNA (nc886). Although nc886/vtRNA2-1/Pre-miR-886 identity is still controversial, it was shown to be epigenetically controlled, presenting both tumor suppressor and oncogenic function in different cancers. Here, we study for the first time the role of nc886 in prostate cancer.

View Article and Find Full Text PDF

Mechanistic target of rapamycin complex (mTORC)1 activity is increased in adipose tissue of obese insulin-resistant mice, but its role in the regulation of tissue inflammation is unknown. Herein, we investigated the effects of adipocyte mTORC1 deficiency on adipose tissue inflammation and glucose homeostasis. For this, mice with adipocyte raptor deletion and controls fed a chow or a high-fat diet were evaluated for body mass, adiposity, glucose homeostasis, and adipose tissue inflammation.

View Article and Find Full Text PDF

Genetic- and diet-induced obesity and insulin resistance are associated with an increase in mechanistic target of rapamycin complex (mTORC) 1 activity in adipose tissue. We investigated herein the effects of pharmacological mTORC1 inhibition in the development of adipose tissue inflammation induced by high-fat diet (HFD) feeding, as well as in the polarization, metabolism and function of bone marrow-derived macrophages (BMDM). For this, C57BL/6J mice fed with a standard chow diet or a HFD (60% of calories from fat) and treated with either vehicle (0.

View Article and Find Full Text PDF

White adipose tissue (WAT) is no longer considered a tissue whose main function is the storage of TAG. Since the discovery of leptin in 1994, several studies have elucidated the important role of WAT as an endocrine organ, the source of the adipokines. The low-grade inflammation observed in obese and cancer cachexia patients is explained, at least partially, by the exacerbated release of proinflammatory adipokines.

View Article and Find Full Text PDF

Background: Cachexia is a systemic syndrome leading to body wasting, systemic inflammation, and to metabolic chaos. It is a progressive condition, and little is known about its dynamics. Detection of the early signs of the disease may lead to the attenuation of the associated symptoms.

View Article and Find Full Text PDF

Background: Cancer is considered the second leading cause of death in the world, and for the treatment of this disease, pharmacological intervention strategies are frequently based on chemotherapy. Doxorubicin (DOX) is one of the most widely used chemotherapeutic agents in clinical practice for treating a number of solid tumours. The treatment with DOX mimics some effects of cancer cachexia, such as anorexia, asthenia, decreases in fat and skeletal muscle mass and fatigue.

View Article and Find Full Text PDF

Cachexia is associated with increased morbidity and mortality in cancer. The White adipose tissue (WAT) synthesizes and releases several pro-inflammatory cytokines that play a role in cancer cachexia-related systemic inflammation. IFN-γ is a pleiotropic cytokine that regulates several immune and metabolic functions.

View Article and Find Full Text PDF

Mechanistic target of rapamycin complex 1 (mTORC1) loss of function reduces adiposity whereas partial mTORC1 inhibition enhances fat deposition. Herein we evaluated how constitutive mTORC1 activation in adipocytes modulates adiposity in vivo. Mice with constitutive mTORC1 activation in adipocytes induced by tuberous sclerosis complex (Tsc)1 deletion and littermate controls were evaluated for body mass, energy expenditure, glucose and fatty acid metabolism, mitochondrial function, mRNA and protein contents.

View Article and Find Full Text PDF

Mutually exclusive genetic alterations in the RET, RAS, or BRAF genes, which result in constitutively active mitogen-activated protein kinase (MAPK) signaling, are present in about 70% of papillary thyroid carcinomas (PTCs). However, the effect of MAPK activation on other signaling pathways involved in oncogenic transformation, such as Notch, remains unclear. In this study, we tested the hypothesis that the MAPK pathway regulates Notch signaling and that Notch signaling plays a role in PTC cell proliferation.

View Article and Find Full Text PDF

Papillary thyroid cancer (PTC) is the most incident histotype of thyroid cancer. A certain fraction of PTC cases (5%) are irresponsive to conventional treatment, and refractory to radioiodine therapy. The current prognostic factors for aggressiveness are mainly based on tumor size, the presence of lymph node metastasis, extrathyroidal invasion and, more recently, the presence of the BRAFT1799A mutation.

View Article and Find Full Text PDF

Aim: We tested the effects of a cancer cachexia-anorexia sydrome upon the balance of anti and pro-inflammatory cytokines in the hypothalamus of sedentary or trained tumour-bearing (Walker-256 carcinosarcoma) rats.

Methods: Animals were randomly assigned to a sedentary control (SC), sedentary tumour-bearing (ST), and sedentary pair-fed (SPF) groups or, exercised control (EC), exercised tumour-bearing (ET) and exercised pair-fed (EPF) groups. Trained rats ran on a treadmill (60%VO2max) for 60 min/d, 5 days/wk, for 8 wks.

View Article and Find Full Text PDF

The present study examined the effects of aerobic training and energy restriction on adipokines levels in mesenteric (MEAT) and retroperitoneal (RPAT) white adipose tissue from obese rats. Male Wistar rats were fed with standard laboratory diet (Control group) or high fat diet (HFD). After 15 weeks, HFD rats were randomly assigned to the following groups: rats submitted to HFD, which were sedentary (sedentary HFD, n=8) or trained (trained HFD, n=8); or submitted to energy-restriction (ER), which were sedentary (sedentary ER, n=8) or trained (trained ER, n=8).

View Article and Find Full Text PDF

Background: The effects of chronic aerobic exercise upon lipid profile has been previously demonstrated, but few studies showed this effect under resistance exercise conditions.

Objective: The aim of this study was to examine the effects of different resistance exercise loads on blood lipids.

Methods: Thirty healthy, untrained male volunteers were allocated randomly into four groups based at different percentages of one repetition maximum (1 RM); 50%-1 RM, 75%-1 RM, 90%-1 RM, and 110%-1 RM.

View Article and Find Full Text PDF

Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy and RET/PTC rearrangements represent key genetic events frequently associated to this cancer, enhancing proliferation and dedifferentiation by activation of the RET/PTC-RAS-BRAF-mitogen-activated protein kinase (MAPK) pathway. Recently, let-7 microRNA was found to reduce RAS levels in lung cancer, acting as a tumor suppressor gene. Here, we report that RET/PTC3 oncogenic activation in PCCL3 rat thyroid cells markedly reduces let-7f expression.

View Article and Find Full Text PDF

Skeletal muscle is the source of pro- and anti-inflammatory cytokines, and recently, it has been recognized as an important source of interleukin-6 (IL-6). Acute physical exercise is known to induce a pro-inflammatory cytokine profile in the plasma. However, the effect of chronic physical exercise in the production of pro- and anti-inflammatory cytokines by the skeletal muscle has never been examined.

View Article and Find Full Text PDF

It is well known that exhaustive exercise increases serum and skeletal muscle IL-6 concentrations. However, the effect of exhaustive exercise on the concentrations of other cytokines in the muscle and in the adipose tissue is controversial. The purpose of this study was to evaluate the effect of exhaustive exercise on mRNA and protein expression of IL-10, TNF-alpha and IL-6 in different types of skeletal muscle (EDL, soleus) and in two different depots of white adipose tissue (mesenteric-MEAT and retroperitoneal-RPAT).

View Article and Find Full Text PDF

Long-term adaptation to resistance training is probably due to the cumulative molecular effects of each exercise session. Therefore, we studied in female Wistar rats the molecular effects of a chronic resistance training regimen (3 months) leading to skeletal muscle hypertrophy in the plantaris muscle. Our results demonstrated that muscle proteolytic genes MuRF-1 and Atrogin-1 were significantly decreased in the exercised group measured 24 h after the last resistance exercise session (41.

View Article and Find Full Text PDF