We investigated the etiology of decreased cone-driven vision in a light damage (LD) model of retinal degeneration. To induce slow, moderate degeneration, albino rats underwent low-intensity light exposure for 10 days. Electroretinography was utilized to assess physiologic function of the rod- and cone-driven retinal function in LD and control rats.
View Article and Find Full Text PDFIntroduction: Microscopic details about retinal conditions can provide insight into pathological mechanisms, but these are ordinarily difficult to obtain in situ. We demonstrate how high-resolution imaging and optical modeling can be combined to reveal morphological features of a macular microcyst, offering insight into microcyst formation.
Objective: To use adaptive optics scanning laser ophthalmoscopic (AOSLO) images to track a transient retinal microcyst and derive its 3-dimensional shape.
Glycogen synthase kinase 3 (GSK3) is a serine-threonine kinase that regulates mammalian circadian rhythms at the behavioral, molecular and neurophysiological levels. In the central circadian pacemaker, the suprachiasmatic nucleus (SCN), inhibitory phosphorylation of GSK3 exhibits a rhythm across the 24 h day. We have recently shown that GSK3 is capable of influencing both the molecular clock and SCN neuronal activity rhythms.
View Article and Find Full Text PDFKey Points: We propose that the end product of chromophore bleaching in rod photoreceptors, all-trans retinol, is part of a feedback loop that increases the sensitivity of the phototransduction cascade in rods. A previously described light-induced hypersensitivity in rods, termed adaptive potentiation, is reduced by exogenously applied all-trans retinol but not all-trans retinal. This potentiation is produced by insulin-like growth factor-1, whose binding proteins are located in the extracellular matrix, even in our isolated retina preparation after removal of the retinal pigmented epithelium.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
February 2015
Purpose: We measured changes in the sensitivity of the human rod pathway by testing visual reaction times before and after light adaptation. We targeted a specific range of conditioning light intensities to see if a physiological adaptation recently discovered in mouse rods is observable at the perceptual level in humans. We also measured the noise spectrum of single mouse rods due to the importance of the signal-to-noise ratio in rod to rod bipolar cell signal transfer.
View Article and Find Full Text PDFBackground: The rod photoreceptor cGMP-gated cation channel, consisting of three α- and one β subunit, controls ion flow into the rod outer segment (ROS). In addition to the β-subunit, the Cngb1 locus encodes an abundant soluble protein, GARP2 that binds stoichiometrically to rod photoreceptor cGMP phosphodiesterase type 6 (PDE6). To examine the in vivo functional role of GARP2 we generated opsin promoter-driven transgenic mice overexpressing GARP2 three-fold specifically in rod photoreceptors.
View Article and Find Full Text PDFPhotoreceptors adapt to changes in illumination by altering transduction kinetics and sensitivity, thereby extending their working range. We describe a previously unknown form of rod photoreceptor adaptation in wild-type (WT) mice that manifests as a potentiation of the light response after periods of conditioning light exposure. We characterize the stimulus conditions that evoke this graded hypersensitivity and examine the molecular mechanisms of adaptation underlying the phenomenon.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
October 2013
Purpose: To determine whether the age-regulating protein klotho was expressed in the retina and determine whether the absence of klotho affected retinal function.
Methods: Immunohistochemistry and qPCR of klotho knockout and wild-type mice were used to detect klotho expression in retina. Immunohistochemistry was used to probe for differences in expression of proteins important in synaptic function, retinal structure, and ionic flux.