The Gadolinium Research and Education Committee (GREC) is a working group of the European Society for Magnetic Resonance in Medicine and Biology (ESMRMB), established in 2016. The aim of the committee is to monitor scientific evidence for a continuous quality and safety improvement of enhanced MRI using gadolinium-based contrast agents (GBCAs), and also assess potential alternatives. The scope of the present article is to describe the level of evidence concerning safety beyond the single patient (access to community and environmental impact), justification and optimization of the use of GBCAs beyond dosage (appropriateness and influence on clinical decision making), dose reduction with the use of AI (benefits and pitfalls), the advent of next-generation GBCAs (based on currently available data).
View Article and Find Full Text PDFBackground And Objectives: In multiple sclerosis (MS), brain reserve serves as a protective factor against cognitive impairment. Previous research has suggested a structural counterpart in the spine-spinal cord reserve-seemed to be associated with physical disability. This study aimed to investigate the potential of the cervical canal area (CCaA) as a proxy for spinal cord reserve in a multicentric cohort of people with MS (PwMS).
View Article and Find Full Text PDFObjective: The 2017 McDonald criteria continued the separation of diagnostic criteria for relapsing-remitting multiple sclerosis (RRMS) and primary progressive MS (PPMS) for historical, rather than biological, reasons. We aimed to explore the feasibility of a single, unified set of diagnostic criteria when applied to patients with suspected PPMS.
Methods: We retrospectively identified patients evaluated for suspected PPMS at 5 European centers.
Background And Objectives: Disentangling brain aging from disease-related neurodegeneration in patients with multiple sclerosis (PwMS) is increasingly topical. The brain-age paradigm offers a window into this problem but may miss disease-specific effects. In this study, we investigated whether a disease-specific model might complement the brain-age gap (BAG) by capturing aspects unique to MS.
View Article and Find Full Text PDFObjective: Pathological amyloid-β (Aβ) accumulation and hyperphosphorylated tau proteins have been described in resected temporal lobe specimens of epilepsy patients. We aimed to determine cerebrospinal fluid (CSF) Aβ1-42 and p181-tau levels and cerebral Aβ deposits on positron emission tomography (Aβ PET) and correlate these findings with cognitive performance in adults with drug-resistant temporal lobe epilepsy (TLE).
Methods: In this cross-sectional study, we enrolled individuals with drug-resistant TLE who were 25-55 years old.
Importance: While the typical onset of multiple sclerosis (MS) occurs in early adulthood, 2% to 10% of cases initially present prior to age 18 years, and approximately 5% after age 50 years. Guidance on approaches to differential diagnosis in suspected MS specific to these 2 age groups is needed.
Observations: There are unique biological factors in children younger than 18 years and in adults older than age 50 years compared to typical adult-onset MS.
The interaction between ageing and multiple sclerosis is complex and carries significant implications for patient care. Managing multiple sclerosis effectively requires an understanding of how ageing and multiple sclerosis impact brain structure and function. Ageing inherently induces brain changes, including reduced plasticity, diminished grey matter volume, and ischaemic lesion accumulation.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) stands as the most sensitive paraclinical technique for detecting the demyelinating lesions characteristic of multiple sclerosis (MS). Consequently, MRI plays a pivotal role in establishing an accurate and timely diagnosis of the disease, ultimately based on the application of the McDonald criteria. Early diagnosis is particularly important as it facilitates the prompt initiation of disease-modifying treatments, deemed most effective during the initial phases of MS.
View Article and Find Full Text PDFThe optic nerve is frequently involved in multiple sclerosis (MS). However, MRI of the optic nerve is considered optional in the differential diagnosis of optic neuropathy symptoms either at presentation or in established MS. In addition, unlike spinal cord imaging in comparable scenarios, no role is currently recommended for optic nerve MRI in patients presenting with optic neuritis for its confirmation, to plan therapeutic strategy, within the MS diagnostic framework, nor for the detection of subclinical activity in established MS.
View Article and Find Full Text PDFBackground And Purpose: Traumatic brain injury (TBI) is a major source of health loss and disability worldwide. Accurate and timely diagnosis of TBI is critical for appropriate treatment and management of the condition. Neuroimaging plays a crucial role in the diagnosis and characterization of TBI.
View Article and Find Full Text PDFOptic neuritis is a common feature in multiple sclerosis and in 2 other autoimmune demyelinating disorders such as aquaporin-4 IgG antibody-associated neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein antibody-associated disease. Although serologic testing is critical for differentiating these different autoimmune-mediated disorders, MR imaging, which is the preferred imaging modality for assessing the optic nerve, can provide valuable information, suggesting a specific diagnosis and guiding the appropriate serologic testing.
View Article and Find Full Text PDFProgression independent of relapse activity (PIRA), a recent concept to formalize disability accrual in multiple sclerosis (MS) independent of relapses, has gained popularity as a potential clinical trial outcome. We discuss its shortcomings and appraise the challenges of implementing it in clinical settings, experimental trials, and research. The current definition of PIRA assumes that acute inflammation, which can manifest as a relapse, and neurodegeneration, manifesting as progressive disability accrual, can be disentangled by introducing specific time windows between the onset of relapses and the observed increase in disability.
View Article and Find Full Text PDFObjective: To evaluate: (1) the distribution of gray matter (GM) atrophy in myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder (AQP4+NMOSD), and relapsing-remitting multiple sclerosis (RRMS); and (2) the relationship between GM volumes and white matter lesions in various brain regions within each disease.
Methods: A retrospective, multicenter analysis of magnetic resonance imaging data included patients with MOGAD/AQP4+NMOSD/RRMS in non-acute disease stage. Voxel-wise analyses and general linear models were used to evaluate the relevance of regional GM atrophy.
Artificial intelligence (AI) is the branch of science aiming at creating algorithms able to carry out tasks that typically require human intelligence. In medicine, there has been a tremendous increase in AI applications thanks to increasingly powerful computers and the emergence of big data repositories. Multiple sclerosis (MS) is a chronic autoimmune condition affecting the central nervous system with a complex pathogenesis, a challenging diagnostic process strongly relying on magnetic resonance imaging (MRI) and a high and largely unexplained variability across patients.
View Article and Find Full Text PDFBackground: Limited data exist regarding treatment response prediction to oral disease-modifying therapies (DMTs) in multiple sclerosis (MS).
Objectives: We assessed the capacity of available scoring systems to anticipate disease activity parameters in naïve relapsing-remitting MS (RRMS) patients initiating daily oral DMTs, hypothesizing that they exhibit different predictive potentials.
Methods: We conducted a retrospective study and applied the Rio Score (RS), modified Rio Score (mRS), and MAGNIMS Score 12 months after DMT initiation.
Background And Objectives: We aimed to assess the presence of retinal neurodegeneration independent of optic neuritis (ON) in myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) and to investigate the development of trans-synaptic anterograde degeneration in these patients after ON.
Methods: Cross-sectional, retrospective study of 34 adult patients with MOGAD and 23 healthy controls (HC). Clinical, optical coherence tomography (OCT), and MRI data were collected.
Background: Standardizing health outcomes is challenging in clinical management, but it also holds the potential for creating a healthcare system that is both more effective and efficient. The aim of the present study is to define a standardized set of health outcomes for managing Relapsing-Remitting Multiple Sclerosis (RRMS).
Methods: The project was led and coordinated by a multidisciplinary scientific committee (SC), which included a literature review, a patient-focused group, three nominal group meetings, and two SC meetings.
T1/T2-weighted ratio is a novel magnetic resonance imaging (MRI) biomarker based on conventional sequences, related to microstructural integrity and with increasing use in multiple sclerosis (MS) research. Different from other advanced MRI techniques, this method has the advantage of being based on routinely acquired MRI sequences, a feature that enables analysis of retrospective cohorts with considerable clinical value. This article provides an overview of this method, describing the previous cross-sectional and longitudinal findings in the main MS clinical phenotypes and in different brain tissues: focal white matter (WM) lesions, normal-appearing white matter (NAWM), cortical gray matter (GM), and deep normal-appearing gray matter (NAGM).
View Article and Find Full Text PDFThe acquisition of images minutes or even hours after intravenous extracellular gadolinium-based contrast agents (GBCA) administration ("Late/Delayed Gadolinium Enhancement" imaging; in this review, further termed LGE) has gained significant prominence in recent years in magnetic resonance imaging. The major limitation of LGE is the long examination time; thus, it becomes necessary to understand when it is worth waiting time after the intravenous injection of GBCA and which additional information comes from LGE. LGE can potentially be applied to various anatomical sites, such as heart, arterial vessels, lung, brain, abdomen, breast, and the musculoskeletal system, with different pathophysiological mechanisms.
View Article and Find Full Text PDF