Publications by authors named "Alex Roth"

Article Synopsis
  • Total knee arthroplasty (TKA) is commonly used for end-stage osteoarthritis, creating a rising healthcare burden that could intensify with an increasing number of surgeries.
  • A state-transition model was crafted to analyze the effectiveness and costs of five hypothetical interventions aimed at reducing TKA needs, focusing on areas like avoiding surgeries and improving patient satisfaction.
  • Findings revealed significant cost savings associated with interventions that prevent TKAs and revisions, particularly benefiting younger patients, highlighting potential innovations that could maximize the value of care while reducing the reliance on surgical procedures.
View Article and Find Full Text PDF

Background: Posttraumatic wrist osteoarthritis is an irreversible and often progressive condition. Many surgical treatments, used in (daily) practice, aim to relieve symptoms like pain and restore function. The aim of this systematic review is to assess the patient reported and functional outcomes of the most common surgical interventions in patients with posttraumatic wrist osteoarthritis.

View Article and Find Full Text PDF

Currently available focal knee resurfacing implants (FKRIs) are fully or partially composed of metals, which show a large disparity in elastic modulus relative to bone and cartilage tissue. Although titanium is known for its excellent osseointegration, the application in FKRIs can lead to potential stress-shielding and metal implants can cause degeneration of the opposing articulating cartilage due to the high resulting contact stresses. Furthermore, metal implants do not allow for follow-up using magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

Brain dissection is typically an important part of teaching neuroscience in health professional programs. This results in the need to effectively remove brains, which is often performed in a gross anatomy laboratory in the same curriculum. The aim of this study was to determine the most effective method of brain removal based on the time required for removal, difficulty of removal, and preservation of key brain structures for educational purposes.

View Article and Find Full Text PDF

Background: Proximal junctional failure is a common complication attributed to the rigidity of long pedicle screw fixation constructs used for surgical correction of adult spinal deformity. Semi-rigid junctional fixation achieves a gradual transition in range of motion at the ends of spinal instrumentation, which could lead to reduced junctional stresses, and ultimately reduce the incidence of proximal junctional failure. This study investigates the biomechanical effect of different semi-rigid junctional fixation techniques in a T8-L3 finite element spine segment model.

View Article and Find Full Text PDF

The clinical success of osteochondral implants depends significantly on their surface properties. In vivo, an implant may roughen over time which can decrease its performance. The present study investigates whether changes in the surface texture of metal and two types of polycarbonate urethane (PCU) focal knee resurfacing implants (FKRIs) occurred after 6 and 12 months of in vivo articulation with native goat cartilage.

View Article and Find Full Text PDF

Background: Focal cartilage defects are often debilitating, possess limited potential for regeneration, are associated with increased risk of osteoarthritis, and are predictive for total knee arthroplasty. Cartilage repair studies typically focus on the outcome in younger patients, but a high proportion of treated patients are 40 to 60 years of age (ie, middle-aged). The reality of current clinical practice is that the ideal patient for cartilage repair is not the typical patient.

View Article and Find Full Text PDF

Study Design: A porcine cadaveric biomechanical study.

Objective: To biomechanically evaluate a novel Cable Anchor System as semi-rigid junctional fixation technique for the prevention of proximal junctional failure after adult spinal deformity surgery and to make a comparison to alternative promising prophylactic techniques.

Summary Of Background Data: The abrupt change of stiffness at the proximal end of a pedicle screw construct is a major risk factor for the development of proximal junctional failure after adult spinal deformity surgery.

View Article and Find Full Text PDF

Study Design: Systematic review.

Objectives: To summarize the results of clinical studies investigating spinal instrumentation techniques aiming to reduce the postoperative incidence of proximal junctional kyphosis (PJK) and/or failure (PJF) in adult spinal deformity (ASD) patients.

Methods: EMBASE and Medline® were searched for articles dating from January 2000 onward.

View Article and Find Full Text PDF

Goats or sheep are the preferred animal model for the preclinical evaluation of cartilage repair techniques due to the similarity of the goat stifle joint to the human knee. The medial femoral condyle of the stifle joint is the preferred site for the assessment of articular cartilage repair, as this is the primary location for this type of lesion in the human knee. Proper surgical exposure of the medial femoral condyle is paramount to obtain reproducible results without surgical error.

View Article and Find Full Text PDF

Growth-guidance constructs are an alternative to growing rods for the surgical treatment of early onset scoliosis (EOS). Constructs containing ultra-high molecular weight polyethylene (UHMWPE) sublaminar tape have been proposed as an improvement to the traditional Luque trolley. Ideally, a certain minimum number of levels is instrumented, thus offering the best balance between providing adequate spinal fixation and minimizing surgical exposure and spinal mobility reduction.

View Article and Find Full Text PDF

Background Context: Adult spinal deformity patients treated operatively by long-segment instrumented spinal fusion are prone to develop proximal junctional kyphosis (PJK) and failure (PJF). A gradual transition in range of motion (ROM) at the proximal end of spinal instrumentation may reduce the incidence of PJK and PJF, however, previously evaluated techniques have not directly been compared.

Purpose: To determine the biomechanical characteristics of five different posterior spinal instrumentation techniques to achieve semirigid junctional fixation, or "topping-off," between the rigid pedicle screw fixation (PSF) and the proximal uninstrumented spine.

View Article and Find Full Text PDF

Background Context: Correction of adult spinal deformity (ASD) by long segment instrumented spinal fusion is an increasingly common surgical intervention. However, it is associated with high rates of complications and revision surgery, especially in the elderly patient population. The high construct stiffness of instrumented thoracolumbar spinal fusion has been postulated to lead to a higher incidence of proximal junctional kyphosis (PJK) and failure (PJF).

View Article and Find Full Text PDF

Objective: Complications after adult spinal deformity surgery are common, with implant-related complications occurring in up to 27.8% of cases. Sublaminar wire fixation strength is less affected by decreasing trabecular bone density in comparison to pedicle screw (PS) fixation due to the predominant cortical bone composition of the lamina.

View Article and Find Full Text PDF

Focal knee resurfacing implants (FKRIs) are intended to treat cartilage defects in middle-aged patients. Most FKRIs are metal-based, which hampers follow-up of the joint using magnetic resonance imaging and potentially leads to damage of the opposing cartilage. The purpose of this study was to develop a nondegradable thermoplastic polyurethane (TPU) FKRI and investigate its osseointegration.

View Article and Find Full Text PDF

Loss of sagittal alignment and balance in adult spinal deformity can cause severe pain, disability and progressive neurological deficit. When conservative treatment has failed, spinal fusion using rigid instrumentation is currently the salvage treatment to stop further curve progression. However, fusion surgery is associated with high revision rates due to instrumentation failure and proximal junctional failure, especially if patients also suffer from osteoporosis.

View Article and Find Full Text PDF

Polymeric sublaminar cables have a number of advantages over metal cables in the field of spinal deformity surgery, with decreased risk of neurological injury and potential for higher correction forces as the two most predominant. However, currently available polymer cables are radiolucent, precluding postoperative radiological assessment of instrumentation stability and integrity. This study provides a preclinical assessment of a woven UHMWPE cable made with radiopaque UHMWPE fibers.

View Article and Find Full Text PDF

Cartilage defects in the knee are often seen in young and active patients. There is a need for effective joint preserving treatments in patients suffering from cartilage defects, as untreated defects often lead to osteoarthritis. Within the last two decades, tissue engineering based techniques using a wide variety of polymers, cell sources, and signaling molecules have been evaluated.

View Article and Find Full Text PDF

There are a number of drawbacks to incorporating large concentrations of barium sulfate (BaSO4) as the radiopacifier in PMMA-based bone cements for percutaneous vertebroplasty. These include adverse effects on injectability, viscosity profile, setting time, mechanical properties of the cement and bone resorption. We have synthesized a novel cement that is designed to address some of these drawbacks.

View Article and Find Full Text PDF

Study Design: An in vitro biomechanical study in porcine thoracic spine segments comparing range of motion (ROM) in segmental versus multiple nonsegmental ultrahigh molecular weight polyethylene (UHMWPE) sublaminar wire constructs.

Objective: To determine the effect of varying instrumentation (wire) density in an UHMWPE sublaminar wire construct for patients with early-onset scoliosis (EOS) to find an optimal wire density, which allows maximum growth whereas still providing adequate correction and fixation.

Summary Of Background Data: UHMWPE sublaminar wires in a segmental construct did not negatively affect longitudinal spinal growth during a 24-week period in an ovine model; application in growth guidance system for EOS may therefore be feasible.

View Article and Find Full Text PDF

Background Context: Numerous prenatal, systemic, or local procedures have been described that have created an experimental scoliosis within different animal species. Compression-based fusionless scoliosis correction devices have been used to induce scoliosis (inverse approach) as an indication for their potential corrective efficacy in large animals. Deformities that most closely approximate the three-dimensional nature of an idiopathic-like scoliosis have been created in large animals using a posterior spinal tether.

View Article and Find Full Text PDF