Objectives: For many malignancies, hypofractionated radiotherapy (HFRT) is an accepted standard associated with decreased treatment time and costs. United States provider beliefs regarding HFRT likely impact its adoption but are poorly studied. We surveyed US-based radiation oncologists (ROs) to gauge HFRT utilization rates for prostate (PC), breast (BC), and rectal cancer (RC) and to characterize the beliefs governing these decisions.
View Article and Find Full Text PDFPurpose: Recent advances to preserve neurocognitive function in patients treated for brain metastases include stereotactic radiosurgery, hippocampal avoidance whole brain radiation therapy (WBRT), and memantine administration. The hippocampus, corpus callosum, fornix, and amygdala are key neurocognitive substructures with a low propensity for brain metastases. Herein, we report our preliminary experience using a "memory-avoidance" WBRT (MA-WBRT) approach that spares these substructures for patients with >15 brain metastases.
View Article and Find Full Text PDFLight-sheet microscopes enable rapid high-resolution imaging of biological specimens; however, biological processes span spatiotemporal scales. Moreover, long-term phenotypes are often instigated by rare or fleeting biological events that are difficult to capture with a single imaging modality. Here, to overcome this limitation, we present smartLLSM, a microscope that incorporates artificial intelligence-based instrument control to autonomously switch between epifluorescent inverted imaging and lattice light-sheet microscopy (LLSM).
View Article and Find Full Text PDFBackground: Despite recommendations for upfront total laryngectomy (TL), many patients with cT4a laryngeal cancer (LC) instead undergo definitive chemoradiation, which is associated with inferior survival. Sociodemographic and oncologic characteristics associated with TL utilization in this population are understudied.
Methods: This retrospective cohort study utilized hospital registry data from the National Cancer Database to analyze patients diagnosed with cT4a LC from 2004 to 2017.
Carbon-fiber reinforced (CFR) polyetheretherketone hardware is an alternative to traditional metal hardware used for spinal fixation surgeries before postoperative radiation therapy for patients with spinal metastases. CFR hardware's radiolucency decreases metal artifact, improving visualization and accuracy of treatment planning. We present the first clinical use and proof of principle of CFR spinal hardware with tantalum markers used for successful tracking of intrafraction motion (IM) using Varian TrueBeam IMR (Intrafraction Motion Review) software module during postoperative spine stereotactic radiation.
View Article and Find Full Text PDFDespite improvements in definitive therapy, many patients with gastrointestinal malignancies experience local recurrences or have unresectable disease making subsequent management often challenging and morbid. Although higher doses of radiation may offer improved local control, the ability for dose escalation of external beam radiation therapy is often limited by adjacent radiosensitive structures. Intraoperative radiation therapy allows for additional radiotherapy to be delivered directly to the tumor or areas at highest risk for local recurrence while minimizing toxicity to adjacent structures, offering potentially improved outcomes for patients with unresectable disease or those with a high risk of local recurrence.
View Article and Find Full Text PDFPurpose Of Review: As the percentage of patients achieving long-term survival following treatment of their cancer grows, it is increasingly important to understand the long-term toxicities of cancer-directed treatment. In this review, we highlight the recent findings regarding radiation-induced cardiotoxicity across multiple disease sites, with a particular focus on heart failure.
Recent Findings: Despite its relative lack of study historically, radiation-induced heart failure has now recently been implicated in several studies of breast cancer, lung cancer, esophageal cancer, and lymphoma as a non-trivial potential consequence of thoracic radiotherapy.
JAMA Otolaryngol Head Neck Surg
February 2023
Importance: Squamous cell carcinoma of the head and neck (HNSCC) is prevalent globally and in the US. Management, particularly after disease recurrence, can be challenging, and exploring additional treatment modalities, such as therapeutic cancer vaccines, may offer an opportunity to improve outcomes in this setting.
Observations: This review provides an overview of the clinical efficacy of different treatment modalities that are currently available for the treatment of recurrent and metastatic HNSCC, including checkpoint inhibitors and targeted therapies, with a detailed summary of the numerous T-cell vaccines that have been studied in the setting of HNSCC, as well as a detailed summary of B-cell therapeutic vaccines being investigated for various malignant tumors.
Purpose: Despite advantages such as abbreviated treatment course, brachytherapy (BT) utilization rates for prostate cancer (PC) in the United States (US) are declining. We surveyed practicing US radiation oncologists (ROs) to determine the proportion who offer BT for PC and whether the COVID-19 pandemic influenced practice patterns.
Materials And Methods: From July-October 2021, we surveyed practicing US ROs.
Brain metastases (BMs) account for a disproportionately high percentage of cancer morbidity and mortality. Historically, studies have focused on improving survival outcomes, and recent radiation oncology clinical trials have incorporated HRQOL and cognitive assessments. We are now equipped with a battery of assessments in the radiation oncology clinic, but there is a lack of consensus regarding how to incorporate them in modern clinical practice.
View Article and Find Full Text PDFGlioblastoma (GBM) is an aggressive primary brain tumor that is associated with a poor prognosis and quality of life. The standard of care has changed minimally over the past two decades and currently consists of surgery followed by radiotherapy (RT), concomitant and adjuvant temozolomide, and tumor treating fields (TTF). Factors such as tumor hypoxia and the presence of glioma stem cells contribute to the radioresistant nature of GBM.
View Article and Find Full Text PDFCytotoxic T lymphocytes (CTLs) and natural killer cells kill virus-infected and tumor cells through the polarized release of perforin and granzymes. Perforin is a pore-forming toxin that creates a lesion in the plasma membrane of the target cell through which granzymes enter the cytosol and initiate apoptosis. Endosomal sorting complexes required for transport (ESCRT) proteins are involved in the repair of small membrane wounds.
View Article and Find Full Text PDFUnderstanding cellular architecture is essential for understanding biology. Electron microscopy (EM) uniquely visualizes cellular structures with nanometre resolution. However, traditional methods, such as thin-section EM or EM tomography, have limitations in that they visualize only a single slice or a relatively small volume of the cell, respectively.
View Article and Find Full Text PDFRadiation training programs are designed to prepare graduates for independent practice, with metrics in place to assess appropriateness of clinical decision-making. Here, we investigated the self-assessed preparedness of US graduates during the transition to independent practice.An anonymous, Internet-based survey was distributed to recent graduates of radiation oncology residencies (2016-2017).
View Article and Find Full Text PDFExhausted T cells have been described in cancer patients and murine tumor models largely based on their expression of various inhibitory receptors. Understanding of the functional attributes of these cells is limited. Here, we report that among CD8 T cells in commonly used syngeneic tumor models, the coexpression of inhibitory receptors PD-1, LAG3, and TIM3 defined a group of highly activated and functional effector cells.
View Article and Find Full Text PDFCD8 cytotoxic T lymphocytes (CTLs) eliminate virally infected cells through directed secretion of specialized lytic granules. Because a single CTL can kill multiple targets, degranulation must be tightly regulated. However, how CTLs regulate the termination of granule secretion remains unclear.
View Article and Find Full Text PDFTo clear infection, cytotoxic lymphocytes must destroy target cells while avoiding nonspecific killing of surrounding healthy cells. In this issue, Hsu et al. (2016.
View Article and Find Full Text PDFCytotoxic T lymphocytes (CTLs) use polarized secretion to rapidly destroy virally infected and tumor cells. To understand the temporal relationships between key events leading to secretion, we used high-resolution 4D imaging. CTLs approached targets with actin-rich projections at the leading edge, creating an initially actin-enriched contact with rearward-flowing actin.
View Article and Find Full Text PDFCells control organelle size with great precision and accuracy to maintain optimal physiology, but the mechanisms by which they do so are largely unknown. Cilia and flagella are simple organelles in which a single measurement, length, can represent size. Maintenance of flagellar length requires an active transport process known as intraflagellar transport, and previous measurements suggest that a length-dependent feedback regulates intraflagellar transport.
View Article and Find Full Text PDFAlthough fluorescence microscopy provides a crucial window into the physiology of living specimens, many biological processes are too fragile, are too small, or occur too rapidly to see clearly with existing tools. We crafted ultrathin light sheets from two-dimensional optical lattices that allowed us to image three-dimensional (3D) dynamics for hundreds of volumes, often at subsecond intervals, at the diffraction limit and beyond. We applied this to systems spanning four orders of magnitude in space and time, including the diffusion of single transcription factor molecules in stem cell spheroids, the dynamic instability of mitotic microtubules, the immunological synapse, neutrophil motility in a 3D matrix, and embryogenesis in Caenorhabditis elegans and Drosophila melanogaster.
View Article and Find Full Text PDF