Decoherence and imperfect control are crucial challenges for quantum technologies. Common protection strategies rely on noise temporal autocorrelation, which is not optimal if other correlations are present. We develop and demonstrate experimentally a strategy that uses the cross-correlation of two noise sources.
View Article and Find Full Text PDFDiffusion noise represents a major constraint to successful liquid state nano-NMR spectroscopy. Using the Fisher information as a faithful measure, we theoretically calculate and experimentally show that phase sensitive protocols are superior in most experimental scenarios, as they maximize information extraction from correlations in the sample. We derive the optimal experimental parameters for quantum heterodyne detection (Qdyne) and present the most accurate statistically polarized nano-NMR Qdyne detection experiments to date, leading the way to resolve chemical shifts and J couplings at the nanoscale.
View Article and Find Full Text PDFMagnetic resonance imaging of C-labeled metabolites enhanced by parahydrogen-induced polarization (PHIP) enables real-time monitoring of processes within the body. We introduce a robust, easily implementable technique for transferring parahydrogen-derived singlet order into C magnetization using adiabatic radio frequency sweeps at microtesla fields. We experimentally demonstrate the applicability of this technique to several molecules, including some molecules relevant for metabolic imaging, where we show significant improvements in the achievable polarization, in some cases reaching above 60% nuclear spin polarization.
View Article and Find Full Text PDFThe impact of measurement imperfections on quantum metrology protocols has not been approached in a systematic manner so far. In this work, we tackle this issue by generalising firstly the notion of quantum Fisher information to account for noisy detection, and propose tractable methods allowing for its approximate evaluation. We then show that in canonical scenarios involving N probes with local measurements undergoing readout noise, the optimal sensitivity depends crucially on the control operations allowed to counterbalance the measurement imperfections-with global control operations, the ideal sensitivity (e.
View Article and Find Full Text PDFDiffusion broadening of spectral lines is the main limitation to frequency resolution in non-polarized liquid state nano-NMR. This problem arises from the limited amount of information that can be extracted from the signal before losing coherence. For liquid state NMR as with most generic sensing experiments, the signal is thought to decay exponentially, severely limiting resolution.
View Article and Find Full Text PDFThe NV-NMR spectrometer is a promising candidate for detection of NMR signals at the nanoscale. Field inhomogeneities, however, are a major source of noise that limits spectral resolution in state of the art NV-NMR experiments and constitutes a major bottleneck in the development of nanoscale NMR. Here we propose, a route in which this limitation could be circumvented in NV-NMR spectrometer experiments, by utilizing the nanometric scale and the quantumness of the detector.
View Article and Find Full Text PDFNitrogen-Vacancy (NV) centers in diamonds have been shown in recent years to be excellent magnetometers on the nanoscale. One of the recent applications of the quantum sensor is retrieving the Nuclear Magnetic Resonance (NMR) spectrum of a minute sample, whose net polarization is well below the Signal-to-Noise Ratio (SNR) of classic devices. The information in the magnetic noise of diffusing particles has also been shown in decoherence spectroscopy approaches to provide a method for measuring different physical parameters.
View Article and Find Full Text PDFThe growing field of nano nuclear magnetic resonance (nano-NMR) seeks to estimate spectra or discriminate between spectra of minuscule amounts of complex molecules. While this field holds great promise, nano-NMR experiments suffer from detrimental inherent noise. This strong noise masks to the weak signal and results in a very low signal-to-noise ratio.
View Article and Find Full Text PDFState of the art quantum sensing experiments targeting frequency measurements or frequency addressing of nuclear spins require one to drive the probe system at the targeted frequency. In addition, there is a substantial advantage to performing these experiments in the regime of high magnetic fields, in which the Larmor frequency of the measured spins is large. In this scenario we are confronted with a natural challenge of controlling a target system with a very high frequency when the probe system cannot be set to resonance with the target frequency.
View Article and Find Full Text PDFThe limits of frequency resolution in nano-NMR experiments have been discussed extensively in recent years. It is believed that there is a crucial difference between the ability to resolve a few frequencies and the precision of estimating a single one. Whereas the efficiency of single frequency estimation gradually increases with the square root of the number of measurements, the ability to resolve two frequencies is limited by the specific timescale of the signal and cannot be compensated for by extra measurements.
View Article and Find Full Text PDFWe present a novel continuous dynamical decoupling scheme for the construction of a robust qubit in a three-level system. By means of a clock transition adjustment, we first show how robustness to environmental noise is achieved, while eliminating drive-noise, to first-order. We demonstrate this scheme with the spin sub-levels of the NV-centre's electronic ground state.
View Article and Find Full Text PDFEngineering entanglement between quantum systems often involves coupling through a bosonic mediator, which should be disentangled from the systems at the operation's end. The quality of such an operation is generally limited by environmental and control noise. One of the prime techniques for suppressing noise is by dynamical decoupling, where one actively applies pulses at a rate that is faster than the typical time scale of the noise.
View Article and Find Full Text PDFState-of-the-art methods for sensing weak AC fields are only efficient in the low frequency domain (<10 MHz). The inefficiency of sensing high-frequency signals is due to the lack of ability to use dynamical decoupling. In this paper we show that dynamical decoupling can be incorporated into high-frequency sensing schemes and by this we demonstrate that the high sensitivity achieved for low frequency can be extended to the whole spectrum.
View Article and Find Full Text PDFPrecise timekeeping is critical to metrology, forming the basis by which standards of time, length, and fundamental constants are determined. Stable clocks are particularly valuable in spectroscopy because they define the ultimate frequency precision that can be reached. In quantum metrology, the qubit coherence time defines the clock stability, from which the spectral linewidth and frequency precision are determined.
View Article and Find Full Text PDFThe nitrogen-vacancy (NV) center in diamond has shown great promise of nanoscale sensing applications, however, near-surface NV suffer from relatively short spin coherence time that limits its sensitivity. This is presumably caused by improper surface termination. Using first-principles calculations, we propose that nitrogen-terminated (111) diamond provides electrical inactivity and surface spin noise free properties.
View Article and Find Full Text PDFWe experimentally demonstrate the protection of a room-temperature hybrid spin register against environmental decoherence by performing repeated quantum error correction whilst maintaining sensitivity to signal fields. We use a long-lived nuclear spin to correct multiple phase errors on a sensitive electron spin in diamond and realize magnetic field sensing beyond the time scales set by natural decoherence. The universal extension of sensing time, robust to noise at any frequency, demonstrates the definitive advantage entangled multiqubit systems provide for quantum sensing and offers an important complement to quantum control techniques.
View Article and Find Full Text PDFWhen incorporated in quantum sensing protocols, quantum error correction can be used to correct for high frequency noise, as the correction procedure does not depend on the actual shape of the noise spectrum. As such, it provides a powerful way to complement usual refocusing techniques. Relaxation imposes a fundamental limit on the sensitivity of state of the art quantum sensors which cannot be overcome by dynamical decoupling.
View Article and Find Full Text PDFA fundamental goal of quantum technologies concerns the exploitation of quantum coherent dynamics for the realization of novel quantum applications such as quantum computing, quantum simulation, and quantum metrology. A key challenge on the way towards these goals remains the protection of quantum coherent dynamics from environmental noise. Here, we propose a concept of a hybrid dressed state from a pair of continuously driven systems.
View Article and Find Full Text PDFWe seek the first indications that a nanoelectromechanical system (NEMS) is entering the quantum domain as its mass and temperature are decreased. We find them by studying the transition from classical to quantum behavior of a driven nonlinear Duffing resonator. Numerical solutions of the equations of motion, operating in the bistable regime of the resonator, demonstrate that the quantum Wigner function gradually deviates from the corresponding classical phase-space probability density.
View Article and Find Full Text PDF