The relationship between sensory stimuli and perceptions is brain-state dependent: in wakefulness, suprathreshold stimuli evoke perceptions; under anesthesia, perceptions are abolished; and during dreaming and in dissociated states, percepts are internally generated. Here, we exploit this state dependence to identify brain activity associated with internally generated or stimulus-evoked perceptions. In awake mice, visual stimuli phase reset spontaneous cortical waves to elicit 3-6 Hz feedback traveling waves.
View Article and Find Full Text PDFGeneral anesthesia-a pharmacologically induced reversible state of unconsciousness-enables millions of life-saving procedures. Anesthetics induce unconsciousness in part by impinging upon sexually dimorphic and hormonally sensitive hypothalamic circuits regulating sleep and wakefulness. Thus, we hypothesized that anesthetic sensitivity should be sex-dependent and modulated by sex hormones.
View Article and Find Full Text PDFThe relationship between sensory stimuli and perceptions is brain-state dependent: in wakefulness stimuli evoke perceptions; under anesthesia perceptions are abolished; during dreaming and in dissociated states, percepts are internally generated. Here, we exploit this state dependence to identify brain activity associated with internally generated or stimulus-evoked perception. In awake mice, visual stimuli phase reset spontaneous cortical waves to elicit 3-6 Hz feedback traveling waves.
View Article and Find Full Text PDFDNA transposable elements and transposase-derived genes are present in most living organisms, including vertebrates, but their function is largely unknown. PiggyBac Transposable Element Derived 5 (PGBD5) is an evolutionarily conserved vertebrate DNA transposase-derived gene with retained nuclease activity in human cells. Vertebrate brain development is known to be associated with prominent neuronal cell death and DNA breaks, but their causes and functions are not well understood.
View Article and Find Full Text PDFThe relationship between neuronal activity and computations embodied by it remains an open question. We develop a novel methodology that condenses observed neuronal activity into a quantitatively accurate, simple, and interpretable model and validate it on diverse systems and scales from single neurons in C. elegans to fMRI in humans.
View Article and Find Full Text PDFMost cognitive functions require the brain to maintain immediately preceding stimuli in working memory. Here, using a human working memory task with multiple delays, we test the hypothesis that working memories are stored in a discrete set of stable neuronal activity configurations called attractors. We show that while discrete attractor dynamics can approximate working memory on a single time scale, they fail to generalize across multiple timescales.
View Article and Find Full Text PDFThe brain can become transiently disconnected from the environment while maintaining vivid, internally generated experiences. This so-called 'dissociated state' can occur in pathological conditions and under the influence of psychedelics or the anesthetic ketamine (KET). The cellular and circuit mechanisms producing the dissociative state remain poorly understood.
View Article and Find Full Text PDFDuring recovery from anesthesia, brain activity switches abruptly between a small set of discrete states. Surprisingly, this switching also occurs under constant doses of anesthesia, even in the absence of stimuli. These metastable states and the transitions between them are thought to form a "scaffold" that ultimately guides the brain back to wakefulness.
View Article and Find Full Text PDFSensory processing is distributed among many brain regions that interact via feedforward and feedback signaling. Neuronal oscillations have been shown to mediate intercortical feedforward and feedback interactions. Yet, the macroscopic structure of the multitude of such oscillations remains unclear.
View Article and Find Full Text PDFBackground: Connected consciousness, assessed by response to command, occurs in at least 5% of general anaesthetic procedures and perhaps more often in young people. Our primary objective was to establish the incidence of connected consciousness after tracheal intubation in young people aged 18-40 yr. The secondary objectives were to assess the nature of these responses, identify relevant risk factors, and determine their relationship to postoperative outcomes.
View Article and Find Full Text PDFEndogenous sleep and general anesthesia are distinct states that share similar traits. Of particular interest to neuroscience is the loss of consciousness that accompanies both states. Multiple lines of evidence demonstrate that general anesthetics can co-opt the neural circuits regulating arousal to produce unconsciousness.
View Article and Find Full Text PDFBackground: Anaesthetic induction occurs at higher plasma drug concentrations than emergence in animal studies. Some studies find evidence for such anaesthetic hysteresis in humans, whereas others do not. Traditional thinking attributes hysteresis to drug equilibration between plasma and the effect site.
View Article and Find Full Text PDFBackground: Recent studies point to a fundamental distinction between population-based and individual-based anaesthetic pharmacology. At the population level, anaesthetic potency is defined as the relationship between drug concentration and the likelihood of response to a stimulus. At the individual level, even when the anaesthetic concentration is held constant, fluctuations between the responsive and unresponsive states are observed.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFPrevious research demonstrates that the underlying state of the brain influences how sensory stimuli are processed. Canonically, the state of the brain has been defined by quantifying the spectral characteristics of spontaneous fluctuations in local field potentials (LFP). Here, we utilized isoflurane and propofol anesthesia to parametrically alter the spectral state of the murine brain.
View Article and Find Full Text PDFIn daily life, in the operating room and in the laboratory, the operational way to assess wakefulness and consciousness is through responsiveness. A number of studies suggest that the awake, conscious state is not the default behavior of an assembly of neurons, but rather a very special state of activity that has to be actively maintained and curated to support its functional properties. Thus responsiveness is a feature that requires active maintenance, such as a homeostatic mechanism to balance excitation and inhibition.
View Article and Find Full Text PDFMechanisms through which anesthetics disrupt neuronal activity are incompletely understood. In order to study anesthetic mechanisms in the intact brain, tight control over anesthetic pharmacology in a genetically and neurophysiologically accessible animal model is essential. Here, we developed a pharmacokinetic model that quantitatively describes propofol distribution into and elimination out of the brain.
View Article and Find Full Text PDFElectroencephalography (EEG) has a long history in neuroscience starting with its original description in humans by Hans Berger in 1929 (Berger, 1932). Investigations of EEG under anesthesia started soon after in the mid-1930s (Gibbs, 1937). No single methodology paper can credibly cover all of the issues relating to this rich field.
View Article and Find Full Text PDFThe existence of a barrier between anesthetic behavioral state transitions has been observed across phyla, but demonstrating that such a barrier exists and is not a pharmacokinetic artifact has not yet been possible in humans. Such an investigation requires temporally precise information regarding the brain concentration of anesthetic in order to demonstrate the specific pharmacokinetic-pharmacodynamic mismatch that is hysteresis. We propose a method to noninvasively determine brain tissue anesthetic concentration using computerized tomography and the radiopaque gaseous anesthetic xenon.
View Article and Find Full Text PDFThe level of activity of many animals including humans rises and falls with a period of ~ 24 hours. The intrinsic biological oscillator that gives rise to this circadian oscillation is driven by a molecular feedback loop with an approximately 24 hour cycle period and is influenced by the environment, most notably the light:dark cycle. In addition to the circadian oscillations, behavior of many animals is influenced by multiple oscillations occurring at faster-ultradian-time scales.
View Article and Find Full Text PDFUnlabelled: What aspects of neuronal activity distinguish the conscious from the unconscious brain? This has been a subject of intense interest and debate since the early days of neurophysiology. However, as any practicing anesthesiologist can attest, it is currently not possible to reliably distinguish a conscious state from an unconscious one on the basis of brain activity. Here we approach this problem from the perspective of dynamical systems theory.
View Article and Find Full Text PDFBackground And Objectives: Ophthalmic arterial chemosurgery for retinoblastoma has been associated with intraoperative decreases in respiratory compliance. Through the analysis of data from computerized records, we objectively defined severe respiratory compliance events and correlated them with demographic and clinical information in patients undergoing this procedure.
Methods: Data were collected from ophthalmic arterial chemosurgery cases from 2006 to 2013.
Proc Natl Acad Sci U S A
June 2014
It is not clear how, after a large perturbation, the brain explores the vast space of potential neuronal activity states to recover those compatible with consciousness. Here, we analyze recovery from pharmacologically induced coma to show that neuronal activity en route to consciousness is confined to a low-dimensional subspace. In this subspace, neuronal activity forms discrete metastable states persistent on the scale of minutes.
View Article and Find Full Text PDFFront Neural Circuits
September 2014
In this work we analyze electro-corticography (ECoG) recordings in human subjects during induction of anesthesia with propofol. We hypothesize that the decrease in responsiveness that defines the anesthetized state is concomitant with the stabilization of neuronal dynamics. To test this hypothesis, we performed a moving vector autoregressive analysis and quantified stability of neuronal dynamics using eigenmode decomposition of the autoregressive matrices, independently fitted to short sliding temporal windows.
View Article and Find Full Text PDF