Embodied action representation and action understanding are the first steps to understand what it means to communicate. We present a biologically plausible mechanism to the representation and the recognition of actions in a neural network with spiking neurons based on the learning mechanism of spike-timing-dependent plasticity (STDP). We show how grasping is represented through the multi-modal integration between the vision and tactile maps across multiple temporal scales.
View Article and Find Full Text PDFIn the study of complex systems a fundamental issue is the mapping of the networks of interaction between constituent subsystems of a complex system or between multiple complex systems. Such networks define the web of dependencies and patterns of continuous and dynamic coupling between the system's elements characterized by directed flow of information spanning multiple spatial and temporal scales. Here, we propose a wavelet-based extension of transfer entropy to measure directional transfer of information between coupled systems at multiple time scales and demonstrate its effectiveness by studying (a) three artificial maps, (b) physiological recordings, and (c) the time series recorded from a chaos-controlled simulated robot.
View Article and Find Full Text PDF