Publications by authors named "Alex Peek"

Phase aberration induced by soft tissue inhomogeneities often complicates high-intensity focused ultrasound (HIFU) therapies by distorting the field and, previously, we designed and fabricated a bilayer gel phantom to reproducibly mimic that effect. A surface pattern containing size scales relevant to inhomogeneities of a porcine body wall was introduced between gel materials with fat- and muscle-like acoustic properties-ballistic and polyvinyl alcohol gels. Here, the phantom design was refined to achieve relevant values of ultrasound absorption and scattering and make it more robust, facilitating frequent handling and use in various experimental arrangements.

View Article and Find Full Text PDF

Graphene oxide (GO) is a promising membrane system for chemical separation applications due to its 2-D nanofluidics properties and an ability to control interplanar spacing for selectivity. The permeance of water, methanol (MeOH) and isopropyl alcohol (IPA) through 5 µm thick membranes was found to be 0.38 ± 0.

View Article and Find Full Text PDF

Inertial cavitation induced by pulsed high-intensity focused ultrasound (pHIFU) has previously been shown to successfully permeabilize tumor tissue and enhance chemotherapeutic drug uptake. In addition to HIFU frequency, peak rarefactional pressure ( p ), and pulse duration, the threshold for cavitation-induced bioeffects has recently been correlated with asymmetric distortion caused by nonlinear propagation, diffraction and formation of shocks in the focal waveform, and therefore with the transducer F -number. To connect previously observed bioeffects with bubble dynamics and their attendant physical mechanisms, the dependence of inertial cavitation behavior on shock formation was investigated in transparent agarose gel phantoms using high-speed photography and passive cavitation detection (PCD).

View Article and Find Full Text PDF

Aberrations induced by soft tissue inhomogeneities often complicate high-intensity focused ultrasound (HIFU) therapies. In this work, a bilayer phantom made from polyvinyl alcohol hydrogel and ballistic gel was built to mimic alternating layers of water-based and lipid tissues characteristic of an abdominal body wall and to reproducibly distort HIFU fields. The density, sound speed, and attenuation coefficient of each material were measured using a homogeneous gel layer.

View Article and Find Full Text PDF
Article Synopsis
  • * The article proposes a novel correction method using nonlinear ultrasound pulses that backscatter from the focal point, tested with a custom BH system in tissue-simulating phantoms.
  • * Implementing a phase correction technique, which combined beamsum and nearest neighbor correlations, effectively compensated for losses caused by tissue heterogeneity, allowing for improved shock generation through aberrating layers.
View Article and Find Full Text PDF

Monolayers of precious metals are deposited within the pores of insulating mesoporous anodized aluminum oxide (AAO) membranes via a new electrochemical underpotential Cu deposition growth front mechanism, followed by spontaneous galvanic replacement of copper by platinum or iridium as demonstrated by XPS, ICP-OES, conductivity, and current analysis. Applications include fuel cells, hydrogen storage, flow batteries, and electrocatalytic conversions.

View Article and Find Full Text PDF