Publications by authors named "Alex Paya"

Absorptive fine roots are an important driver of soil biogeochemical cycles. Yet, the spatio-temporal dynamics of those roots in the presence of neighboring species remain poorly understood. The aim of this study was to analyze shifts in absorptive fine-root traits in monoculture or mixtures of Fagus sylvatica [L.

View Article and Find Full Text PDF

The (13/12) C ratio in plant roots is likely dynamic depending on root function (storage versus uptake), but to date, little is known about the effect of season and root order (an indicator of root function) on the isotopic composition of C-rich fractions in roots. To address this, we monitored the stable isotopic composition of one evergreen (Picea abies) and one deciduous (Fagus sylvatica), tree species' roots by measuring δ(13) C of bulk, respired and labile C, and starch from first/second and third/fourth order roots during spring and fall root production periods. In both species, root order differences in δ(13) C were observed in bulk organic matter, labile, and respired C fractions.

View Article and Find Full Text PDF

The sedimentation of starch-filled plastids is thought to be the primary mechanism by which gravity is perceived in roots. Following gravity perception, auxin redistribution toward the lower flank of roots, initiated in the root cap, is believed to play a role in regulation of the gravity response. Amyloplast sedimentation and auxin flux, however, have never been directly linked.

View Article and Find Full Text PDF