Publications by authors named "Alex Palma-Cando"

Electropolymerization is a convenient way to obtain conducting polymers (CPs) directly adhered to an electrode surface. CPs are well-known for their various application fields in photovoltaic cells, chemical sensors, and electronics. By implementing chirality into a CP, the application possibilities will spread further onto chiral sensors or optoelectronics.

View Article and Find Full Text PDF

The persistence and potential toxicity of emergent pollutants pose significant threats to biodiversity and human health, emphasizing the need for sensors capable of detecting these pollutants at extremely low concentrations before treatment. This study focuses on the development of glassy carbon electrodes (GCEs) modified by films of poly-tris(4-(4-(carbazol-9-yl)phenyl)silanol (PTPTCzSiOH), poly-4,4'-Di(carbazol-9-yl)-1,1'-biphenyl (PCBP), and poly-1,3,5-tri(carbazol-9-yl)benzene (PTCB) for the detection of metronidazole (MNZ) in aqueous media. The films were characterized using electrochemical, microscopy, and spectroscopy techniques, including scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Electrically conducting and semiconducting polymers represent a special and still very attractive class of functional chromophores, especially due to their unique optical and electronic properties and their broad device application potential. They are potentially suitable as materials for several applications of high future relevance, for example flexible photovoltaic modules, components of displays/screens and batteries, electrochromic windows, or photocatalysts. Therefore, their synthesis and structure elucidation are still intensely investigated.

View Article and Find Full Text PDF

Global energy demand is increasing; thus, emerging renewable energy sources, such as organic solar cells (OSCs), are fundamental to mitigate the negative effects of fuel consumption. Within OSC's advancements, the development of efficient and stable interface materials is essential to achieve high performance, long-term stability, low costs, and broader applicability. Inorganic and nanocarbon-based materials show a suitable work function, tunable optical/electronic properties, stability to the presence of moisture, and facile solution processing, while organic conducting polymers and small molecules have some advantages such as fast and low-cost production, solution process, low energy payback time, light weight, and less adverse environmental impact, making them attractive as hole transporting layers (HTLs) for OSCs.

View Article and Find Full Text PDF

commonly known as Dragon's blood, is a tree cultivated in the northwest Amazon rainforest of Ecuador and Peru. This tree produces a deep red latex which is composed of different natural products such as phenolic compounds, alkaloids, and others. The chemical structures of these natural products found in latex are promising corrosion inhibitors of admiralty brass (AB), due to the number of heteroatoms and structures.

View Article and Find Full Text PDF

Electrochemical sensors appear as low-cost, rapid, easy to use, and in situ devices for determination of diverse analytes in a liquid solution. In that context, conducting polymers are much-explored sensor building materials because of their semiconductivity, structural versatility, multiple synthetic pathways, and stability in environmental conditions. In this state-of-the-art review, synthetic processes, morphological characterization, and nanostructure formation are analyzed for relevant literature about electrochemical sensors based on conducting polymers for the determination of molecules that (i) have a fundamental role in the human body function regulation, and (ii) are considered as water emergent pollutants.

View Article and Find Full Text PDF

Microbiologically induced carbonate precipitation (MICP) is a well-known biogeochemical process that allows the formation of calcium carbonate deposits in the extracellular environment. The high concentration of carbonate and calcium ions on the bacterial surface, which serves as nucleation sites, promotes the calcium carbonate precipitation filling and binding deteriorated materials. Historic buildings and artwork, especially those present in open sites, are susceptible to enhanced weathering resulting from environmental agents, interaction with physical-chemical pollutants, and living organisms, among others.

View Article and Find Full Text PDF

Intrinsically conducting polymers (ICPs) have been widely utilized in organic electronics, actuators, electrochromic devices, and sensors. Many potential applications demand the formation of thin polymer films, which can be generated by electrochemical polymerization. Electrochemical methods are quite powerful and versatile and can be utilized for investigation of ICPs, both for educational purposes and materials chemistry research.

View Article and Find Full Text PDF

Low-bandgap near-infrared polymers are usually synthesized using the common donor-acceptor (D-A) approach. However, recently polymer chemists are introducing more complex chemical concepts for better fine tuning of their optoelectronic properties. Usually these studies are limited to one or two polymer examples in each case study so far, though.

View Article and Find Full Text PDF

We propose microporous networks (MPNs) of a light emitting spiro-carbazole based polymer (PSpCz) as luminescent sensor for nitro-aromatic compounds. The MPNs used in this study can be easily synthesized on arbitrarily sized/shaped substrates by simple and low-cost electrochemical deposition. The resulting MPN afford an extremely high specific surface area of 1300 m(2)/g, more than three orders of magnitude higher than that of the thin films of the respective monomer.

View Article and Find Full Text PDF

Thin films of microporous polymer networks (MPNs) have been generated by electrochemical polymerization of a series of multifunctional carbazole-based monomers. The microporous films show high Brunauer-Emmett-Teller (BET) surface areas up to 1300 m2 g(-1) as directly measured by krypton sorption experiments. A correlation between the number of polymerizable carbazole units of the monomer and the resulting surface area is observed.

View Article and Find Full Text PDF