Cu/Zn superoxide dismutase (Sod1) is a highly conserved and abundant antioxidant enzyme that detoxifies superoxide (O) by catalyzing its conversion to dioxygen (O) and hydrogen peroxide (HO). Using and mammalian cells, we discovered that a major aspect of the antioxidant function of Sod1 is to integrate O availability to promote NADPH production. The mechanism involves Sod1-derived HO oxidatively inactivating the glycolytic enzyme, GAPDH, which in turn reroutes carbohydrate flux to the oxidative phase of the pentose phosphate pathway (oxPPP) to generate NADPH.
View Article and Find Full Text PDFThe inherited form of open angle glaucoma arises due to a toxic gain-of-function intracellular misfolding event involving a mutated myocilin olfactomedin domain (OLF). Mutant myocilin is recognized by the endoplasmic reticulum (ER)-resident heat shock protein 90 paralog, glucose regulated protein 94 (Grp94), but their co-aggregation precludes mutant myocilin clearance by ER-associated degradation. When the Grp94-mutant myocilin interaction is abrogated by inhibitors or siRNA, mutant myocilin is efficiently degraded.
View Article and Find Full Text PDFMechanistic details of intramembrane aspartyl protease (IAP) chemistry, which is central to many biological and pathogenic processes, remain largely obscure. Here, we investigated the kinetics of a microbial intramembrane aspartyl protease (mIAP) fortuitously acting on the renin substrate angiotensinogen and the C-terminal transmembrane segment of amyloid precursor protein (C100), which is cleaved by the presenilin subunit of γ-secretase, an Alzheimer disease (AD)-associated IAP. mIAP variants with substitutions in active-site and putative substrate-gating residues generally exhibit impaired, but not abolished, activity toward angiotensinogen and retain the predominant cleavage site (His-Thr).
View Article and Find Full Text PDFWe describe the DRILL (dry ion localization and locomotion) device, which is an interface for electrospray ionization (ESI)-mass spectrometry (MS) that exploits a swirling flow to enable the use of inertial separation to prescribe different fates for electrosprayed droplets based on their size. This source adds a new approach to charged droplet trajectory manipulation which, when combined with hydrodynamic drag forces and electric field forces, provides a rich range of possible DRILL operational modes. Here, we experimentally demonstrate sensitivity improvement obtained via vortex-induced inertial sorting of electrosprayed droplets/ions: one possible mode of DRILL operation.
View Article and Find Full Text PDF