From biomineralization to synthesis, organic additives provide an effective means of controlling crystallization processes. There is growing evidence that these additives are often occluded within the crystal lattice. This promises an elegant means of creating nanocomposites and tuning physical properties.
View Article and Find Full Text PDFThe term mesocrystal has been widely used to describe crystals that form by oriented assembly, and that exhibit nanoparticle substructures. Using calcite crystals co-precipitated with polymers as a suitable test case, this article looks critically at the concept of mesocrystals. Here we demonstrate that the data commonly used to assign mesocrystal structure may be frequently misinterpreted, and that these calcite/polymer crystals do not have nanoparticle substructures.
View Article and Find Full Text PDFThis paper describes a powerful and versatile new method for controlling the structure of zinc oxide thin films prepared by aerosol assisted chemical vapour deposition, based on the use of a common surfactant. The technique combines the benefits of solution and vapour based methods and leads to high quality morphologically-defined and orientated thin films.
View Article and Find Full Text PDFChem Commun (Camb)
September 2007
Macroporous copper with a complex hyperbolic morphology and superior mechanical properties was produced by replicating the remarkable form of a sea urchin skeletal plate using templated electrochemical deposition.
View Article and Find Full Text PDFTwo double-hydrophilic block copolymers, each comprising a nonionic block and an anionic block comprising pendent aromatic sulfonate groups, were used as additives to modify the crystallization of CaCO3. Marked morphological changes in the CaCO3 particles were observed depending on the reaction conditions used. A poly(ethylene oxide)-b-poly(sodium 4-styrenesulfonate) diblock copolymer was particularly versatile in effecting a morphological change in calcite particles, and a continuous structural transition in the product particles from polycrystalline to mesocrystal to single crystal was observed with variation in the calcium concentration.
View Article and Find Full Text PDFSingle crystals of calcite with regular patterned surfaces comprising close-packed arrays of hemispherical cavities or domes were produced by crystallization on colloidal monolayers or PDMS replicas of these monolayers, respectively. Perfect replication of the substrate topography was achieved for all colloidal particles, irrespective of their size and surface chemistry when the substrate geometry permitted unrestricted ion flow to the growing crystal. This work demonstrates that crystallization within a mould provides a very general route to producing single crystals with curved surfaces and unusual morphologies and that such patterning can be applied from the micro- to the nanoscale.
View Article and Find Full Text PDF