Publications by authors named "Alex McLatchie"

Gains and losses of DNA are prevalent in cancer and emerge as a consequence of inter-related processes of replication stress, mitotic errors, spindle multipolarity and breakage-fusion-bridge cycles, among others, which may lead to chromosomal instability and aneuploidy. These copy number alterations contribute to cancer initiation, progression and therapeutic resistance. Here we present a conceptual framework to examine the patterns of copy number alterations in human cancer that is widely applicable to diverse data types, including whole-genome sequencing, whole-exome sequencing, reduced representation bisulfite sequencing, single-cell DNA sequencing and SNP6 microarray data.

View Article and Find Full Text PDF

Background: Ligation-mediated PCR protocols have diverse uses including the identification of integration sites of insertional mutagens, integrating vectors and naturally occurring mobile genetic elements. For approaches that employ NGS sequencing, the relative abundance of integrations within a complex mixture is typically determined through the use of read counts or unique fragment lengths from a ligation of sheared DNA; however, these estimates may be skewed by PCR amplification biases and saturation of sequencing coverage.

Results: Here we describe a modification of our previous splinkerette based ligation-mediated PCR using a novel Illumina-compatible adapter design that prevents amplification of non-target DNA and incorporates unique molecular identifiers.

View Article and Find Full Text PDF

Chronic Trypanosoma cruzi infections lead to cardiomyopathy in 20-30% of cases. A causal link between cardiac infection and pathology has been difficult to establish because of a lack of robust methods to detect scarce, focally distributed parasites within tissues. We developed a highly sensitive bioluminescence imaging system based on T.

View Article and Find Full Text PDF

Background: Human African trypanosomiasis is caused by infection with parasites of the Trypanosoma brucei species complex, and threatens over 70 million people in sub-Saharan Africa. Development of new drugs is hampered by the limitations of current rodent models, particularly for stage II infections, which occur once parasites have accessed the CNS. Bioluminescence imaging of pathogens expressing firefly luciferase (emission maximum 562 nm) has been adopted in a number of in vivo models of disease to monitor dissemination, drug-treatment and the role of immune responses.

View Article and Find Full Text PDF

HUMAN AFRICAN TRYPANOSOMIASIS (HAT) MANIFESTS IN TWO STAGES OF DISEASE: firstly, haemolymphatic, and secondly, an encephalitic phase involving the central nervous system (CNS). New drugs to treat the second-stage disease are urgently needed, yet testing of novel drug candidates is a slow process because the established animal model relies on detecting parasitemia in the blood as late as 180 days after treatment. To expedite compound screening, we have modified the GVR35 strain of Trypanosoma brucei brucei to express luciferase, and have monitored parasite distribution in infected mice following treatment with trypanocidal compounds using serial, non-invasive, bioluminescence imaging.

View Article and Find Full Text PDF

Bloodstream-form Trypanosoma brucei acquire iron by receptor-mediated endocytosis of host transferrin. However, the mechanism(s) by which iron is then transferred from the lysosome to the cytosol are unresolved. Here, we provide evidence for the involvement of a protein (TbMLP) orthologous to the mammalian endolysosomal cation channel Mucolipin 1.

View Article and Find Full Text PDF