Publications by authors named "Alex McKee"

Recombinant adeno-associated virus (AAV) represents an efficient system for neuronal transduction. However, a potential drawback of AAV is its restricted packaging capacity of approximately 5 kb. To bypass this limitation, a number of dual- and triple-vector strategies divide the transgene(s) between two or three AAVs.

View Article and Find Full Text PDF

Linkage testing using Affymetrix 6.0 SNP Arrays mapped the disease locus in TCD-G, an Irish family with autosomal dominant retinitis pigmentosa (adRP), to an 8.8 Mb region on 1p31.

View Article and Find Full Text PDF

Long-term memory is formed by alterations in glutamate-dependent excitatory synaptic transmission, which is in turn regulated by synaptosomal protein of 25 kDa (SNAP-25), a key component of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex essential for exocytosis of neurotransmitter-filled synaptic vesicles. Both reduced and excessive SNAP-25 activity has been implicated in various disease states that involve cognitive dysfunctions such as attention deficit hyperactivity disorder, schizophrenia and Alzheimer's disease. Here, we over-express SNAP-25 in the adult rat dorsal hippocampus by infusion of a recombinant adeno-associated virus vector, to evaluate the consequence of late adolescent-adult dysfunction of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein in the absence of developmental disruption.

View Article and Find Full Text PDF

Mutations within the inosine 5'-monophosphate dehydrogenase 1 (IMPDH1) gene cause the RP10 form of autosomal dominant retinitis pigmentosa (adRP), an early-onset retinopathy resulting in extensive visual handicap owing to progressive death of photoreceptors. Apart from the prevalence of RP10, estimated to account for 5-10% of cases of adRP in United States and Europe, two observations render this form of RP an attractive target for gene therapy. First, we show that while recombinant adeno-associated viral (AAV)-mediated expression of mutant human IMPDH1 protein in the mouse retina results in an aggressive retinopathy modelling the human counterpart, expression of a normal human IMPDH1 gene under similar conditions has no observable pathological effect on retinal function, indicating that over-expression of a therapeutic replacement gene may be relatively well tolerated.

View Article and Find Full Text PDF

Comparative analysis of the transcriptional profiles of approximately 6000 genes in the retinas of wild-type mice with those carrying a targeted disruption of the rhodopsin gene was undertaken by microarray analysis. This revealed a series of transcripts, of which some were derived from genes known to map at retinopathy loci, levels of which were reduced or elevated in the retinas of Rho(-/-) mice lacking functional photoreceptors. The human homologue of one of these genes, encoding inosine monophosphate dehydrogenase type 1 (IMPDH1), maps to the region of 7q to which an adRP gene (RP10) had previously been localized.

View Article and Find Full Text PDF