Publications by authors named "Alex Loguinov"

Past functional toxicogenomic studies have indicated that genes relevant to membrane lipid synthesis are important for tolerance to the lanthanides. Moreover, previously reported imaging of patient's brains following administration of gadolinium-based contrast agents shows gadolinium lining the vessels of the brain. Taken together, these findings suggest the disruption of cytoplasmic membrane integrity as a mechanism by which lanthanides induce cytotoxicity.

View Article and Find Full Text PDF

Despite their similar physicochemical properties, recent studies have demonstrated that lanthanides can display different biological behaviors. Hence, the lanthanide series can be divided into three parts, namely early, mid, and late lanthanides, based on their interactions with biological systems. In particular, the late lanthanides demonstrate distinct, but poorly understood biological activity.

View Article and Find Full Text PDF

Lanthanides are a series of elements essential to a wide range of applications, from clean energy production to healthcare. Despite their presence in multiple products and technologies, their toxicological characteristics have been only partly studied. Recently, our group has employed a genomic approach to extensively characterize the toxicity mechanisms of lanthanides.

View Article and Find Full Text PDF

Etoposide is used to treat a wide range of malignant cancers, including acute myeloid leukemia (AML) in children. Despite the use of intensive chemotherapeutic regimens containing etoposide, a significant proportion of pediatric patients with AML become resistant to treatment and relapse, leading to poor survival. This poses a pressing clinical challenge to identify mechanisms underlying drug resistance to enable effective pharmacologic targeting.

View Article and Find Full Text PDF

Gadolinium is a metal used in contrast agents for magnetic resonance imaging. Although gadolinium is widely used in clinical settings, many concerns regarding its toxicity and bioaccumulation after gadolinium-based contrast agent administration have been raised and published over the last decade. To date, most toxicological studies have focused on identifying acute effects following gadolinium exposure, rather than investigating associated toxicity mechanisms.

View Article and Find Full Text PDF

Europium is a lanthanide metal that is highly valued in optoelectronics. Even though europium is used in many commercial products, its toxicological profile has only been partially characterized, with most studies focusing on identifying lethal doses in different systems or bioaccumulation in vivo. This paper describes a genome-wide toxicogenomic study of europium in Saccharomyces cerevisiae, which shares many biological functions with humans.

View Article and Find Full Text PDF

The HIV-protease inhibitor nelfinavir has shown broad anticancer activity in various preclinical and clinical contexts. In patients with advanced, proteasome inhibitor (PI)-refractory multiple myeloma, nelfinavir-based therapy resulted in 65% partial response or better, suggesting that this may be a highly active chemotherapeutic option in this setting. The broad anticancer mechanism of action of nelfinavir implies that it interferes with fundamental aspects of cancer cell biology.

View Article and Find Full Text PDF

Organochlorine pesticides (OCPs) are persistent pollutants linked to diverse adverse health outcomes. Environmental exposure to OCPs has been suggested to negatively impact the immune system but their effects on cellular antiviral responses remain unknown. Transcriptomic analysis of N27 rat dopaminergic neuronal cells unexpectedly detected high level expression of genes in the interferon (IFN)-related antiviral response pathways including the IFN-induced protein with tetratricopeptide repeats 1 and 2 (Ifit1/2) and the MX Dynamin Like GTPases Mx1 and Mx2.

View Article and Find Full Text PDF

Lanthanides are a series of critical elements widely used in multiple industries, such as optoelectronics and healthcare. Although initially considered to be of low toxicity, concerns have emerged during the last few decades over their impact on human health. The toxicological profile of these metals, however, has been incompletely characterized, with most studies to date solely focusing on one or two elements within the group.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how persistent organic pollutants, specifically PCBs and PBDEs, affect the health of wild-caught hornyhead turbot fish by analyzing their liver responses to these contaminants.
  • - Using a transcriptomic approach, researchers found distinct gene expression profiles in fish exposed to different pollutants, revealing significant impacts on immune responses, endocrine functions, and lipid metabolism.
  • - The results suggest that transcriptomic tools can enhance the assessment of chemical toxicity in aquatic environments, helping to identify harmful substances in fish populations during ecological surveys.
View Article and Find Full Text PDF

Formaldehyde (FA), a ubiquitous environmental pollutant, is classified as a Group I human carcinogen by the International Agency for Research on Cancer. Previously, we reported that FA induced hematotoxicity and chromosomal aneuploidy in exposed workers and toxicity in bone marrow and hematopoietic stem cells of experimental animals. Using functional toxicogenomic profiling in yeast, we identified genes and cellular processes modulating eukaryotic FA cytotoxicity.

View Article and Find Full Text PDF

Transferrin-bound iron (TBI), the physiological circulating iron form, is acquired by cells through the transferrin receptor (TfR1) by endocytosis. In erythroid cells, most of the acquired iron is incorporated into heme in the mitochondria. Cellular trafficking of heme is indispensable for erythropoiesis and many other essential biological processes.

View Article and Find Full Text PDF

Organochlorine pesticides, once widely used, are extremely persistent and bio-accumulative in the environment. Epidemiological studies have implicated that environmental exposure to organochlorine pesticides including dieldrin is a risk factor for the development of Parkinson's disease. However, the pertinent mechanisms of action remain poorly understood.

View Article and Find Full Text PDF

Acetaldehyde, a metabolite of ethanol, is a cellular toxicant and a human carcinogen. A genome-wide CRISPR-based loss-of-function screen in erythroleukemic K562 cells revealed candidate genetic contributors affecting acetaldehyde cytotoxicity. Secondary screening exposing cells to a lower acetaldehyde dose simultaneously validated multiple candidate genes whose loss results in increased sensitivity to acetaldehyde.

View Article and Find Full Text PDF

Purpose: Understanding how differentiation, microenvironment, and hormonal milieu influence human breast cell susceptibility to malignant transformation will require the use of physiologically relevant in vitro systems. We sought to develop a 3D culture model that enables the propagation of normal estrogen receptor alpha (ER) + cells.

Methods: We tested soluble factors and protocols for the ability to maintain progenitor and ER + cells in cultures established from primary cells.

View Article and Find Full Text PDF

Arsenic exposure is a worldwide health concern associated with an increased risk of skin, lung, and bladder cancer but arsenic trioxide (AsIII) is also an effective chemotherapeutic agent. The current use of AsIII in chemotherapy is limited to acute promyelocytic leukemia (APL). However, AsIII was suggested as a potential therapy for other cancer types including chronic myeloid leukemia (CML), especially when combined with other drugs.

View Article and Find Full Text PDF

Background & Aims: Multicopper ferroxidases (MCFs) facilitate intestinal iron absorption and systemic iron recycling, likely by a mechanism involving the oxidization of Fe from the iron exporter ferroportin 1 for delivery to the circulating Fe carrier transferrin. Hephaestin (HEPH), the only MCF known to be expressed in enterocytes, aids in the basolateral transfer of dietary iron to the blood. Mice lacking HEPH in the whole body ( ) or intestine alone ( ) exhibit defects in dietary iron absorption but still survive and grow.

View Article and Find Full Text PDF

Trichloroethylene (TCE), an industrial chemical and environmental contaminant, is a human carcinogen. Reactive metabolites are implicated in renal carcinogenesis associated with TCE exposure, yet the toxicity mechanisms of these metabolites and their contribution to cancer and other adverse effects remain unclear. We employed an integrated functional genomics approach that combined functional profiling studies in yeast and avian DT40 cell models to provide new insights into the specific mechanisms contributing to toxicity associated with TCE metabolites.

View Article and Find Full Text PDF

Iron homeostasis is tightly regulated, and the peptide hormone hepcidin is considered to be a principal regulator of iron metabolism. Previous studies in a limited number of mouse strains found equivocal sex- and strain-dependent differences in mRNA and serum levels of hepcidin and reported conflicting data on the relationship between hepcidin () mRNA levels and iron status. Our aim was to clarify the relationships between strain, sex, and hepcidin expression by examining multiple tissues and the effects of different dietary conditions in multiple inbred strains.

View Article and Find Full Text PDF

Fundamental questions remain about the application of omics in environmental risk assessments, such as the consistency of data across laboratories. The objective of the present study was to determine the congruence of transcript data across 6 independent laboratories. Male fathead minnows were exposed to a measured concentration of 15.

View Article and Find Full Text PDF

Formaldehyde (FA) is a commercially important chemical with numerous and diverse uses. Accordingly, occupational and environmental exposure to FA is prevalent worldwide. Various adverse effects, including nasopharyngeal, sinonasal, and lymphohematopoietic cancers, have been linked to FA exposure, prompting designation of FA as a human carcinogen by U.

View Article and Find Full Text PDF

Transcriptomic analysis can complement traditional ecotoxicology data by providing mechanistic insight, and by identifying sub-lethal organismal responses and contaminant classes underlying observed toxicity. Before transcriptomic information can be used in monitoring and risk assessment, it is necessary to determine its reproducibility and detect key steps impacting the reliable identification of differentially expressed genes. A custom 15K-probe microarray was used to conduct transcriptomics analyses across six laboratories with estuarine amphipods exposed to cyfluthrin-spiked or control sediments (10 days).

View Article and Find Full Text PDF
Article Synopsis
  • Exposure to toxaphene, a harmful insecticide linked to cancers and diseases like ALS, has unclear mechanisms of toxicity.
  • This study used yeast models to show that toxaphene impacts mutants related to transcription elongation and nutrient use, revealing growth issues when combined with mycophenolic acid, another inhibitor.
  • Unlike mycophenolic acid, toxaphene doesn't reduce nucleotide levels or affect transcription elongation directly, but many affected yeast genes have human counterparts, suggesting deeper research is needed on its toxicity effects in humans.
View Article and Find Full Text PDF

Dimethyl sulfoxide (DMSO) is frequently utilized as a solvent in toxicological and pharmaceutical investigations. It is therefore important to establish the cellular and molecular targets of DMSO in order to differentiate its intrinsic effects from those elicited by a compound of interest. We performed a genome-wide functional screen in Saccharomyces cerevisiae to identify deletion mutants exhibiting sensitivity to 1% DMSO, a concentration standard to yeast chemical profiling studies.

View Article and Find Full Text PDF

Daphnia magna is a bioindicator organism accepted by several international water quality regulatory agencies. Current approaches for assessment of water quality rely on acute and chronic toxicity that provide no insight into the cause of toxicity. Recently, molecular approaches, such as genome wide gene expression responses, are enabling an alternative mechanism based approach to toxicity assessment.

View Article and Find Full Text PDF