Constructing general knowledge by learning task-independent models of the world can help agents solve challenging problems. However, both constructing and evaluating such models remain an open challenge. The most common approaches to evaluating models is to assess their accuracy with respect to observable values.
View Article and Find Full Text PDFWithin computational reinforcement learning, a growing body of work seeks to express an agent's knowledge of its world through large collections of predictions. While systems that encode predictions as General Value Functions (GVFs) have seen numerous developments in both theory and application, whether such approaches are explainable is unexplored. In this perspective piece, we explore GVFs as a form of explainable AI.
View Article and Find Full Text PDFPredictions and predictive knowledge have seen recent success in improving not only robot control but also other applications ranging from industrial process control to rehabilitation. A property that makes these predictive approaches well-suited for robotics is that they can be learned online and incrementally through interaction with the environment. However, a remaining challenge for many prediction-learning approaches is an appropriate choice of prediction-learning parameters, especially parameters that control the magnitude of a learning machine's updates to its predictions (the or ).
View Article and Find Full Text PDF