Background: This technical note aims to verify the hippocampus and adjacent organs at risk (OARs) sparing ability of an improved beam arrangement, namely hybrid split-arc partial-field volumetric modulated arc therapy (VMAT) (Hsapf-VMAT) during whole brain radiation therapy (WBRT).
Materials And Methods: Computed tomography simulation images of 22 patients with brain metastases were retrieved in this retrospective planning study. The hippocampus was manually delineated according to the criterion of RTOG 0933.
Background: Due to the role expansion of radiotherapists in dosimetric aspect, radiotherapists have taken up organs at risk (OARs) contouring work in many clinical settings. However, training of newly qualified radiotherapists in OARs contouring can be time consuming, it may also cause extra burden to experienced radiotherapists. As web-based open-source radiotherapy delineation software (WORDS) has become more readily available, it has provided a free and interactive alternative to conventional one-to-one coaching approach during OARs contouring training.
View Article and Find Full Text PDFBackground: Although whole brain radiation therapy (WBRT) provides palliation and prophylaxis, reduces local recurrence probability and improves overall survival, it is evident that WBRT is associated with neurocognitive deficits due to radiation induced damage of the hippocampus. Therefore, minimizing hippocampal dose to the least possible level is of high clinical relevance. In dual-arc conventional volumetric modulated arc therapy (dac-VMAT), the large irradiation field for whole brain planned target volume (PTV) requires a wide jaw opening in which substantial low dose volume to the hippocampus may be produced due to suboptimal multi-leaf collimator (MLC) movements.
View Article and Find Full Text PDF