Publications by authors named "Alex K-Y Jen"

We demonstrate the use of high-sensitivity, off-normal transmission IR spectroscopy with s-polarized light to probe the chemical identity and orientation of quaterphenyldithiol (QPDT) molecular assemblies on GaAs as a function of ammonium hydroxide (NH4OH) concentration. NH4OH is added to the assembly solution to convert the thioacetyl groups on the QPDT precursor to thiolates. When assembled at high NH4OH concentrations, the acetyl groups are completely removed, and QPDT is disordered on GaAs.

View Article and Find Full Text PDF

The one-dimensional (1-D) self-assembly property of an n-type hexaazatrinaphthylene (HATNA) discotic pi-conjugated molecule was studied. Structurally robust unimolecular columnar stacks of HATNA with tunable length have been fabricated through a combination of supramolecular self-assembly and post-polymerization approach. Moreover, microcontact printing can be utilized to transfer the self-assembled nanostructures to the surface to create desired functional patterns.

View Article and Find Full Text PDF

Although gigahertz-scale free-carrier modulators have been demonstrated in silicon, intensity modulators operating at terahertz speeds have not been reported because of silicon's weak ultrafast nonlinearity. We have demonstrated intensity modulation of light with light in a silicon-polymer waveguide device, based on the all-optical Kerr effect-the ultrafast effect used in four-wave mixing. Direct measurements of time-domain intensity modulation are made at speeds of 10 GHz.

View Article and Find Full Text PDF

We have systematically examined the photoluminescence (PL) and electroluminescence (EL) behavior of blends comprising two efficient red phosphors doped, respectively, into the blue-emitting polyfluorene derivatives PF-TPA-OXD and PF-OXD. The host polymers, which contain both hole- and electron-transporting or merely electron-transporting side chains, are capable of facilitating charge injection and transport. After determining the HOMO and LUMO energy levels of these materials, we were able to match the dopant with its most suitable host to achieve the direct formation and confinement of an exciton at the dopant.

View Article and Find Full Text PDF

A simple approach to form arrays of covalently bonded single gold nanoparticles (AuNPs) is demonstrated. Asymmetric molecular assemblies composed of two layers of rigid aromatic molecules with different structures, arranged in hexagonal arrays on a template produced by edge-spreading lithography, are used to guide the assembly of AuNPs. Arrays of single AuNPs are achieved by taking advantage of the interplay of electrostatic interactions and covalent bonding in conjunction with the positional constraint on the template.

View Article and Find Full Text PDF

Strong hydrogen bonding and pi-pi stacking between 1-pyrylphosphonic acid (PYPA) molecules were exploited to create self-assembled two-dimensional supramolecular structures. Polycrystalline films of these laminate crystalline PYPA bilayers were easily deposited onto the solid supports through a simple spin-coating technique. Atomic force microscopy (AFM), scanning tunneling microscopy (STM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis absorption, and fluorescence spectroscopy reveal that processing parameters, such as solvent, concentration, and surface of the substrate, are critical factors in determining the final morphology of the stacked film.

View Article and Find Full Text PDF

[reaction: see text] A facile synthetic route has been developed to convert an electron-rich, sterically hindered dialkylaminodienone into a conjugated dialkylaminotrienal with good yield. The derived dialkylaminotetraene-type nonlinear optical chromophores possess an all-trans conformation and can be functionalized with fluoro-dendron to provide proper shape modification for poling. Polymers doped with two examples of these chromophores in high concentrations have been poled to afford ultra-large electrooptic coefficients (r(33)) of 208 and 262 pm/V, respectively, at the measuring wavelength of 1.

View Article and Find Full Text PDF

High-efficiency polymer light-emitting diodes were fabricated by inserting a layer of nonionic neutral surfactant between the electroluminescent (EL) layer and the high-work-function aluminum cathode via spin coating. It was found that both the poly(ethylene glycol)- and poly(propylene glycol)-based surfactants as well as their copolymers can all demonstrate similar performance enhancement. Device performances comparable to or even better than those of the control devices using calcium as the cathode have been achieved for both poly(p-phenylene)-based and polyfluorene-based conjugated polymers with orange-red, green, and blue emission colors.

View Article and Find Full Text PDF

Parallel-displaced pi-pi stacking interactions have been known to be the dominant force in stabilizing the double helical structure of DNA and the tertiary structure of proteins. However, little is known about their roles in self-assembled monolayers of other large pi molecules such as aromatic thiols. Here we report on a systematic study of the self-assembled monolayers of four kinds of anthracene-based thiols, 9-mercaptoanthracene (MA), (4-mercaptophenyl) (9-anthryl) acetylene (MPAA), (4-mercaptophenyl) (10-nitro-9-anthryl) acetylene (MPNAA), and (4-mercaptophenyl) (10-carboxyl-9-anthryl) acetylene (MPCAA) on Au(111), in which a spacer and different functional groups (NO2 and COOH) are intentionally designed to introduce and thus allow the investigation of various intermolecular interactions, in addition to pi-pi interactions in the base molecules.

View Article and Find Full Text PDF

A macrocyclic trichromophore bundle 1 with parallel-aligned dipole moments has been synthesized to study the influence of aggregation and orientation of a nonlinear optical (NLO) chromophore on its optical properties. The linear and nonlinear optical properties of 1 and a single chromophore standard 2 have been studied by UV-vis absorption, fluorescence, solvatochromic spectrometry, and hyper-Rayleigh scattering (HRS). Reduced first-order hyperpolarizability beta, hypsochromic shift, enhanced solvatochromic shifts, and fluorescence quenching for individual chromophores were observed when 1 was compared with 2.

View Article and Find Full Text PDF

We report multilayer nanocrystal quantum dot light-emitting diodes (QD-LEDs) fabricated by spin-coating a monolayer of colloidal CdSe/CdS nanocrystals on top of thermally polymerized solvent-resistant hole-transport layers (HTLs). We obtain high-quality QD layers of controlled thickness (down to submonolayer) simply by spin-coating QD solutions directly onto the HTL. The resulting QD-LEDs exhibit narrow ( approximately 30 nm, fwhm) electroluminescence from the QDs with virtually no emission from the organic matrix at any voltage.

View Article and Find Full Text PDF

The assembly of terphenyldithiol (TPDT) and quaterphenyldithiol (QPDT) on gold and gallium arsenide from ethanol (EtOH), tetrahydrofuran (THF), and solutions consisting of both solvents has been characterized by near-edge X-ray absorption fine structure spectroscopy. The surface coverage and the average orientation of both TPDT and QPDT on gold are solvent-independent. These molecules readily form monolayers on gold with an ensemble-average backbone tilt of 30 degrees +/- 3 degrees from the substrate normal.

View Article and Find Full Text PDF

A series of novel nonlinear optical (NLO) chromophores 1-4 incorporating the ferrocenyl (Fc) group as an electron donor and 2-dicyanomethylene-3-cyano-4-methyl-2,5-dihydrofuran (TCF) derivatives as electron acceptors are presented. The use of a constant Fc donor and varied acceptors and bridges makes it possible to systematically determine the contribution of the conjugated bridge and the acceptor strength to chromophore nonlinear optical activity. The X-ray crystal structures of all four chromophores allow for the systematic investigation of the structure-property relationship for this class of molecules.

View Article and Find Full Text PDF

Chiral molecular triangles and squares containing the Pt(diimine) metallocorners were synthesized and characterized, and used as the triplet MLCT luminophore in highly efficient light-emitting devices.

View Article and Find Full Text PDF

We report the electro-optic properties of hybrid silica solgel doped with a nonlinear chromophore with large hyperpolarizability. Electro-optic coefficients of higher than 30 pm/V have been obtained. Moreover, the electro-optic coefficients have good temporal stability and show promise for the development of high-speed electro-optic devices.

View Article and Find Full Text PDF

One-, two-, and three-photon absorption induced fluorescence intensities of a novel nonlinear optical chromophore have been measured by using a tunable femtosecond pulsed laser as the excitation. Four resonance peaks are observed as the excitation wavelength is tuned from 600 to 2000 nm. These peaks correspond to the one-, two- and three-photon fluorescence resonance.

View Article and Find Full Text PDF

The frequency dependence of the first molecular hyperpolarizability of a dendrimer incorporated with thiophene-stilbene based charge-transfer chromophores is investigated by using a nanosecond 1907 nm laser and a number of wavelengths ranging from 1160 to 1760 nm emitted from an optical parametric amplifier pumped by a 1 kHz 130 fs Ti:sapphire laser. The measured hyperpolarizabilities are compared with those calculated from the charge-transfer absorption spectrum involving a Kramers-Kronig transformation scheme. The Kramers-Kronig transformation analysis provides a satisfactory account of the dispersion of the first molecular hyperpolarizability over the entire excitation wavelength range measured.

View Article and Find Full Text PDF

Proteins, through their unique and specific interactions with other macromolecules and inorganics, control structures and functions of all biological hard and soft tissues in organisms. Molecular biomimetics is an emerging field in which hybrid technologies are developed by using the tools of molecular biology and nanotechnology. Taking lessons from biology, polypeptides can now be genetically engineered to specifically bind to selected inorganic compounds for applications in nano- and biotechnology.

View Article and Find Full Text PDF

We report new divalent osmium complexes that feature strong red metal-to-ligand-charge-transfer (MLCT) phosphorescence and electrophosphorescence. The general formula of the complexes is Os(II)(N-N)(2)L-L, where N-N is either a bipyridine or a phenanthroline and L-L is either a phosphine or an arsine. New polypyridyl ligands synthesized are 4,4'-di(biphenyl)-2,2'-bipyridine (15) and 4,4'-di(diphenyl ether)-2,2'-bipyridine (16), and the 1,10-phenanthroline derivatives synthesized are 4,7-bis(p-methoxyphenyl)-1,10-phenanthroline (17), 4,7-bis(p-bromophenyl)-1,10-phenanthroline (18), 4,7-bis(4'-phenoxybiphen-4-yl)-1,10-phenanthroline (19), and 4,7-bis(4-naphth-2-ylphenyl)-1,10-phenanthroline (20).

View Article and Find Full Text PDF

A 3-D shape nonlinear optical chromophore encapsulated by highly-fluorinated dendrons exhibits significantly improved electro-optic properties and optical attenuation.

View Article and Find Full Text PDF