Invited for this month's cover are collaborating teams from academia-the French ICPEES and IS2M of Centre national de la recherche scientifique (CNRS) and the Italian ICCOM of Consiglio Nazionale delle Ricerche (CNR)-and industry with the participation of the ORANO group. The cover picture shows a CO -to-CH process promoted by nickel nanoparticles supported on depleted uranium oxide under exceptionally low temperature values or autothermal conditions. The Research Article itself is available at 10.
View Article and Find Full Text PDFNi-based catalysts prepared through impregnation of depleted uranium oxides (DU) have successfully been employed as highly efficient, selective, and durable systems for CO hydrogenation to substituted natural gas (SNG; CH ) under an autothermal regime. The thermo-physical properties of DU and the unique electronic structure of f-block metal-oxides combined with a nickel active phase, generated an ideal catalytic assembly for turning waste energy back into useful energy for catalysis. In particular, Ni/UO stood out for the capacity of DU matrix to control the extra heat (hot-spots) generated at its surface by the highly exothermic methanation process.
View Article and Find Full Text PDF