Publications by authors named "Alex J Krejci"

Order within sub-monolayers of nanoparticles, fabricated by electrophoretic deposition, was assessed during nanoparticle deposition in a liquid suspension and after the films had dried by grazing-incidence small-angle X-ray scattering. Experiments were performed in a custom-made, liquid-phase cell. The results indicated that ordering occurred during the drying event.

View Article and Find Full Text PDF

The degree of order within nanoparticle monolayers deposited through electrophoretic deposition on lithographically patterned and unpatterned substrates was analyzed using four complementary measures of order: Voronoi-cell edge-fraction entropy, local bond-orientation order parameter, translational order parameter, and anisotropy order parameter. From these measures of order, we determined that the pattern had an influence on some aspects of the ordering within the nanoparticle monolayer but had no effect on others. The Voronoi-cell edge-fraction entropy did not measurably change due to the pattern, indicating that the pattern has no effect on the number of defects present.

View Article and Find Full Text PDF

The controlled electrophoretic deposition of monolayers and ultrathin films of 4.0 nm TiO(2) nanocrystals from stable, nonpolar solvent-based suspensions is reported. Stable suspensions were prepared in hexane, and the electrophoretic mobility of the nanocrystals was enhanced by a combination of a liquid-liquid extraction followed by mechanical surfactant removal by high-speed centrifugation.

View Article and Find Full Text PDF

Iron-oxide nanoparticle monolayers and multilayers were assembled using dc electrophoretic deposition. The rate of deposition and the total particle deposition were controlled by varying the concentration of nanoparticles and the deposition time, respectively. Using scanning electron microscopy, we performed a time-resolved study that demonstrated the growth of the monolayer from a single isolated nanoparticle to a nearly complete layer.

View Article and Find Full Text PDF

This report describes methods to produce large-area films of graphene oxide from aqueous suspensions using electrophoretic deposition. By selecting the appropriate suspension pH and deposition voltage, films of the negatively charged graphene oxide sheets can be produced with either a smooth "rug" microstructure on the anode or a porous "brick" microstructure on the cathode. Cathodic deposition occurs in the low pH suspension with the application of a relatively high voltage, which facilitates a gradual change in the colloids' charge from negative to positive as they adsorb protons released by the electrolysis of water.

View Article and Find Full Text PDF