Percutaneous osseointegrated (OI) implants are increasingly viable as an alternative to socket suspension of prosthetic limbs. Upper extremity prostheses have also become more complex to better replicate hand and arm function and attempt to recreate pre-amputation functional levels. With more functionality comes heavier devices that put more stress on the bone-implant interface, which could be an issue for implant stability.
View Article and Find Full Text PDFBackground: Percutaneous osseointegrated devices for skeletal fixation of prosthetic limbs have the potential to improve clinical outcomes in the transhumeral amputee population. Initial endoprosthesis stability is paramount for long-term osseointegration and safe clinical introduction of this technology. We evaluated an endoprosthetic design featuring a distally porous coated titanium stem with proximal slots for placement of bicortical interlocking screws.
View Article and Find Full Text PDFPercutaneous osseointegrated (OI) prosthetic limb attachment holds promise for transhumeral amputees. Understanding humeral medullary morphology is necessary for informed design of upper extremity OI systems, and is beneficial to the field of megaprosthetic reconstruction of the distal humerus where diaphyseal fixation is desired. The purpose of this study was to quantify the sex and laterality differences in humerus morphology, specifically over the diaphysis.
View Article and Find Full Text PDFPercutaneous osseointegrated (OI) implants for direct skeletal attachment of upper extremity prosthetics represent an alternative to traditional socket suspension that may yield improved patient function and satisfaction. This is especially true in high-level, transhumeral amputees where prosthetic fitting is challenging and abandonment rates remain high. However, maintaining mechanical integrity of the bone-implant interface is crucial for safe clinical introduction of this technology.
View Article and Find Full Text PDFBackground: The humeral subluxation index (HSI) is frequently assessed on computed tomography (CT) scans in conditions of the shoulder characterized by humeral displacement. An arbitrarily set HSI cutoff value of 45% for anterior subluxation and 55% for posterior subluxation has been widely accepted. We studied whether mean values and thresholds of humeral subluxation, in relation to the glenoid and scapula, were influenced by different imaging modalities.
View Article and Find Full Text PDFPurpose: To deploy and quantify the accuracy of 3D dual echo steady state (DESS) MR arthrography with hip traction to image acetabular cartilage. Clinical magnetic resonance imaging (MRI) sequences used to image hip cartilage often have reduced out-of-plane resolution and may lack adequate signal-to-noise to image cartilage.
Materials And Methods: Saline was injected into four cadaver hips placed under traction.