Building trustworthy and transparent image-based medical artificial intelligence (AI) systems requires the ability to interrogate data and models at all stages of the development pipeline, from training models to post-deployment monitoring. Ideally, the data and associated AI systems could be described using terms already familiar to physicians, but this requires medical datasets densely annotated with semantically meaningful concepts. In the present study, we present a foundation model approach, named MONET (medical concept retriever), which learns how to connect medical images with text and densely scores images on concept presence to enable important tasks in medical AI development and deployment such as data auditing, model auditing and model interpretation.
View Article and Find Full Text PDFThe inferences of most machine-learning models powering medical artificial intelligence are difficult to interpret. Here we report a general framework for model auditing that combines insights from medical experts with a highly expressive form of explainable artificial intelligence. Specifically, we leveraged the expertise of dermatologists for the clinical task of differentiating melanomas from melanoma 'lookalikes' on the basis of dermoscopic and clinical images of the skin, and the power of generative models to render 'counterfactual' images to understand the 'reasoning' processes of five medical-image classifiers.
View Article and Find Full Text PDFBuilding trustworthy and transparent image-based medical AI systems requires the ability to interrogate data and models at all stages of the development pipeline: from training models to post-deployment monitoring. Ideally, the data and associated AI systems could be described using terms already familiar to physicians, but this requires medical datasets densely annotated with semantically meaningful concepts. Here, we present a foundation model approach, named MONET (edical ccept rriever), which learns how to connect medical images with text and generates dense concept annotations to enable tasks in AI transparency from model auditing to model interpretation.
View Article and Find Full Text PDFDespite the proliferation and clinical deployment of artificial intelligence (AI)-based medical software devices, most remain black boxes that are uninterpretable to key stakeholders including patients, physicians, and even the developers of the devices. Here, we present a general model auditing framework that combines insights from medical experts with a highly expressive form of explainable AI that leverages generative models, to understand the reasoning processes of AI devices. We then apply this framework to generate the first thorough, medically interpretable picture of the reasoning processes of machine-learning-based medical image AI.
View Article and Find Full Text PDFLiving J Comput Mol Sci
January 2023
The weighted ensemble (WE) strategy has been demonstrated to be highly efficient in generating pathways and rate constants for rare events such as protein folding and protein binding using atomistic molecular dynamics simulations. Here we present two sets of tutorials instructing users in the best practices for preparing, carrying out, and analyzing WE simulations for various applications using the WESTPA software. The first set of more basic tutorials describes a range of simulation types, from a molecular association process in explicit solvent to more complex processes such as host-guest association, peptide conformational sampling, and protein folding.
View Article and Find Full Text PDFThe weighted ensemble (WE) family of methods is one of several statistical mechanics-based path sampling strategies that can provide estimates of key observables (rate constants and pathways) using a fraction of the time required by direct simulation methods such as molecular dynamics or discrete-state stochastic algorithms. WE methods oversee numerous parallel trajectories using intermittent overhead operations at fixed time intervals, enabling facile interoperability with any dynamics engine. Here, we report on the major upgrades to the WESTPA software package, an open-source, high-performance framework that implements both basic and recently developed WE methods.
View Article and Find Full Text PDFWe present the Rate from Event Durations (RED) scheme, a new scheme that more efficiently calculates rate constants using the weighted ensemble path sampling strategy. This scheme enables rate-constant estimation from shorter trajectories by incorporating the probability distribution of event durations, or barrier-crossing times, from a simulation. We have applied the RED scheme to weighted ensemble simulations of a variety of rare-event processes that range in complexity: residue-level simulations of protein conformational switching, atomistic simulations of Na/Cl association in explicit solvent, and atomistic simulations of protein-protein association in explicit solvent.
View Article and Find Full Text PDFArtificial intelligence (AI) researchers and radiologists have recently reported AI systems that accurately detect COVID-19 in chest radiographs. However, the robustness of these systems remains unclear. Using state-of-the-art techniques in explainable AI, we demonstrate that recent deep learning systems to detect COVID-19 from chest radiographs rely on confounding factors rather than medical pathology, creating an alarming situation in which the systems appear accurate, but fail when tested in new hospitals.
View Article and Find Full Text PDFWe present a new force field, AMBER ff15ipq-m, for simulations of protein mimetics in applications from therapeutics to biomaterials. This force field is an expansion of the AMBER ff15ipq force field that was developed for canonical proteins and enables the modeling of four classes of artificial backbone units that are commonly used alongside natural α residues in blended or "heterogeneous" backbones: chirality-reversed D-α-residues, the C-methylated α-residue Aib, homologated β-residues (β) bearing proteinogenic side chains, and two cyclic β residues (β; APC and ACPC). The ff15ipq-m force field includes 472 unique atomic charges and 148 unique torsion terms.
View Article and Find Full Text PDFLiving J Comput Mol Sci
October 2019
The weighted ensemble (WE) strategy has been demonstrated to be highly efficient in generating pathways and rate constants for rare events such as protein folding and protein binding using atomistic molecular dynamics simulations. Here we present five tutorials instructing users in the best practices for preparing, carrying out, and analyzing WE simulations for various applications using the WESTPA software. Users are expected to already have significant experience with running standard molecular dynamics simulations using the underlying dynamics engine of interest (e.
View Article and Find Full Text PDFThe design of protein conformational switches-or proteins that change conformations in response to a signal such as ligand binding-has great potential for developing novel biosensors, diagnostic tools, and therapeutic agents. Among the defining properties of such switches, the response time has been the most challenging to optimize. Here we apply a computational design strategy in synergistic combination with biophysical experiments to rationally improve the response time of an engineered protein-based Ca-sensor in which the switching process occurs via mutually exclusive folding of two alternate frames.
View Article and Find Full Text PDF