Publications by authors named "Alex J Cope"

The capacity to learn abstract concepts such as 'sameness' and 'difference' is considered a higher-order cognitive function, typically thought to be dependent on top-down neocortical processing. It is therefore surprising that honey bees apparantly have this capacity. Here we report a model of the structures of the honey bee brain that can learn sameness and difference, as well as a range of complex and simple associative learning tasks.

View Article and Find Full Text PDF

Brain structure and learning capacities both vary with experience, but the mechanistic link between them is unclear. Here, we investigated whether experience-dependent variability in learning performance can be explained by neuroplasticity in foraging honey bees. The mushroom bodies (MBs) are a brain center necessary for ambiguous olfactory learning tasks such as reversal learning.

View Article and Find Full Text PDF

The insect central complex (CX) is an enigmatic structure whose computational function has evaded inquiry, but has been implicated in a wide range of behaviours. Recent experimental evidence from the fruit fly (Drosophila melanogaster) and the cockroach (Blaberus discoidalis) has demonstrated the existence of neural activity corresponding to the animal's orientation within a virtual arena (a neural 'compass'), and this provides an insight into one component of the CX structure. There are two key features of the compass activity: an offset between the angle represented by the compass and the true angular position of visual features in the arena, and the remapping of the 270° visual arena onto an entire circle of neurons in the compass.

View Article and Find Full Text PDF

We present a novel neurally based model for estimating angular velocity (AV) in the bee brain, capable of quantitatively reproducing experimental observations of visual odometry and corridor-centering in free-flying honeybees, including previously unaccounted for manipulations of behaviour. The model is fitted using electrophysiological data, and tested using behavioural data. Based on our model we suggest that the AV response can be considered as an evolutionary extension to the optomotor response.

View Article and Find Full Text PDF