Publications by authors named "Alex J Cadotte"

An understanding of the in vivo spatial emergence of abnormal brain activity during spontaneous seizure onset is critical to future early seizure detection and closed-loop seizure prevention therapies. In this study, we use Granger causality (GC) to determine the strength and direction of relationships between local field potentials (LFPs) recorded from bilateral microelectrode arrays in an intermittent spontaneous seizure model of chronic temporal lobe epilepsy before, during, and after Racine grade partial onset generalized seizures. Our results indicate distinct patterns of directional GC relationships within the hippocampus, specifically from the CA1 subfield to the dentate gyrus, prior to and during seizure onset.

View Article and Find Full Text PDF

While temporal lobe epilepsy (TLE) has been treatable with anti-seizure medications over the past century, there still remain a large percentage of patients whose seizures remain untreatable pharmacologically. To better understand and treat TLE, our laboratory uses several in vivo analytical techniques to estimate connectivity in epilepsy. This paper reviews two different connectivity-based approaches with an emphasis on application to the study of epilepsy.

View Article and Find Full Text PDF

A major goal of neuroscience is to understand the relationship between neural structures and their function. Recording of neural activity with arrays of electrodes is a primary tool employed toward this goal. However, the relationships among the neural activity recorded by these arrays are often highly complex making it problematic to accurately quantify a network's structural information and then relate that structure to its function.

View Article and Find Full Text PDF

Delivery of pharmacological agents in vitro can often be a difficult, time consuming and costly process. In this paper, we describe an economical method for in vitro delivery using a hydrogel of poly hydroxyethyl methacrylate (PHEMA) that can absorb up to 50% of its weight of any water-solubilized pharmacological agent. This agent will then passively diffuse into surrounding media upon application in vitro.

View Article and Find Full Text PDF