Publications by authors named "Alex Hogg"

A physiologically based pharmacokinetic model for di-(2-ethylhexyl) terephthalate (DEHTP) based on a refined model for di-(2-propylheptyl) phthalate (DPHP) was developed to interpret the metabolism and biokinetics of DEHTP following a single oral dose of 50 mg to three male volunteers. and methods were used to generate parameters for the model. For example, measured intrinsic hepatic clearance scaled from to and plasma unbound fraction and tissue:blood partition coefficients (PCs) were predicted algorithmically.

View Article and Find Full Text PDF

A computational workflow which integrates physiologically based kinetic (PBK) modelling; global sensitivity analysis (GSA), Approximate Bayesian Computation (ABC), Markov Chain Monte Carlo (MCMC) simulation and the Virtual Cell Based Assay (VCBA) for the estimation of the active, free concentration of chemical in the reaction medium was developed to facilitate quantitative to extrapolation (QIVIVE). The workflow was designed to estimate parameter and model uncertainty within a computationally efficient framework. The workflow was tested using a human PBK model for bisphenol A (BPA) and high throughput screening (HTS) concentration-response data, for estrogen and pregnane X receptor activation determined in human liver and kidney cell lines, from the ToxCast/Tox21 database.

View Article and Find Full Text PDF

A physiologically based pharmacokinetic model for Di-(2-propylheptyl) phthalate (DPHP) was developed to interpret the biokinetics in humans after single oral doses. The model was parameterized with and in silico derived parameters and uncertainty and sensitivity analysis was used during the model development process to assess structure, biological plausibility and behaviour prior to simulation and analysis of human biological monitoring data. To provide possible explanations for some of the counter-intuitive behaviour of the biological monitoring data the model included a simple lymphatic uptake process for DPHP and enterohepatic recirculation (EHR) for DPHP and the mono ester metabolite mono-(2-propylheptyl) phthalate (MPHP).

View Article and Find Full Text PDF

A computational workflow which integrates physiologically based kinetic (PBK) modeling, global sensitivity analysis (GSA), approximate Bayesian computation (ABC), and Markov Chain Monte Carlo (MCMC) simulation was developed to facilitate quantitative to extrapolation (QIVIVE). The workflow accounts for parameter and model uncertainty within a computationally efficient framework. The workflow was tested using a human PBK model for perfluorooctanoic acid (PFOA) and high throughput screening (HTS) concentration-response data, determined in a human liver cell line, from the ToxCast/Tox21 database.

View Article and Find Full Text PDF

A computational workflow was developed to facilitate the process of quantitative to extrapolation (QIVIVE), specifically the translation of concentration-response to dose-response relationships and subsequent derivation of a benchmark dose value (BMD). The workflow integrates physiologically based pharmacokinetic (PBPK) modeling; global sensitivity analysis (GSA), Approximate Bayesian Computation (ABC) and Markov Chain Monte Carlo (MCMC) simulation. For a given set of concentration and response data the algorithm returns the posterior distribution of the corresponding , population-based dose-response values, for a given route of exposure.

View Article and Find Full Text PDF

The risk assessment of environmental chemicals and drugs is moving towards a paradigm shift in approach which seeks the full replacement animal testing with high throughput, mechanistic, in vitro systems. This new vision will be reliant on the measurement in vitro, of concentration-dependent responses where prolonged excessive perturbations of specific biochemical pathways are likely to lead to adverse health effects in an intact organism. Such an approach requires a framework, into which disparate data generated using in vitro, in silico and in chemico systems, can be integrated and utilised for quantitative in vitro-to-in vivo extrapolation (QIVIVE), ultimately to the human population level.

View Article and Find Full Text PDF

The risk assessment of environmental chemicals and drugs is moving towards a paradigm shift in approach which seeks the full replacement animal testing with high throughput, mechanistic, in vitro systems. This new vision will be reliant on the measurement in vitro, of concentration-dependent responses where prolonged excessive perturbations of specific biochemical pathways are likely to lead to adverse health effects in an intact organism. Such an approach requires a framework, into which disparate data generated using in vitro, in silico and in chemico systems, can be integrated and utilised for quantitative in vitro-to-in vivo extrapolation (QIVIVE), ultimately to the human population level.

View Article and Find Full Text PDF

Objective: This study aimed to examine the extent to which illness perceptions and coping strategies among women diagnosed with breast cancer explain psychological distress at diagnosis and at 6 months post diagnosis relative to demographic and illness-related variables.

Methods: Women were recruited to the study shortly after diagnosis. A total of 90 women completed study materials (Illness Perception Questionnaire-Revised, the Cancer Coping Questionnaire and the Hospital Anxiety and Depression Scale) at time 1.

View Article and Find Full Text PDF

Physiologically based pharmacokinetic models are being used in an increasing number of different areas. However, they are perceived as complex, data hungry, resource intensive, and time consuming. In addition, model validation and verification are hindered by the relative complexity of the equations.

View Article and Find Full Text PDF