An electrochemical biosensor for the detection of glucose is realized by immobilizing glucose oxidase (GOx) enzyme onto titanium dioxide nanotube arrays by a coupling encapsulation process. We present details of a robust fabrication technique that results in a durable and reproducible sensor characteristics. The TiO₂ nanotube arrays are grown directly on a titanium substrate by a potentiostatic anodization process in a water and ethylene-glycol mixture solution, which contains ammonium fluoride.
View Article and Find Full Text PDFBackground: Non-healing chronic wounds, such as venous leg ulcers, can be monitored non-invasively by using modern sensing devices and wireless technologies. The development of such a wireless diagnostic tool may improve chronic wound management by providing evidence on efficacy of treatments being provided. This paper presents a low-power portable telemetric system for wound condition sensing and monitoring.
View Article and Find Full Text PDFThis paper presents the development of an improved mobile-based telemetric dual mode sensing system to monitor pressure and moisture levels in compression bandages and dressings used for chronic wound management. The system is fabricated on a 0.2 mm thick flexible printed circuit material, and is capable of sensing pressure and moisture at two locations simultaneously within a compression bandage and wound dressing.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
May 2014
The management of chronic wounds has emerged as a major health care challenge during the 21st century consuming, significant portions of health care budgets. Chronic wounds such as diabetic foot ulcers, leg ulcers, and pressure sores have a significant negative impact on the quality of life of affected individuals. Covering wounds with suitable dressings facilitates the healing process and is common practice in wound management plans.
View Article and Find Full Text PDF