Publications by authors named "Alex H Miller"

Three artificial imine reductases, constructed via supramolecular anchoring utilising Fe-azotochelin, a natural siderophore, to bind an iridium-containing catalyst to periplasmic siderophore-binding protein (PBP) scaffolds, have previously been synthesised and subjected to catalytic testing. Despite exhibiting high homology and possessing conserved siderophore anchor coordinating residues, the three artificial metalloenzymes (ArMs) displayed significant variability in turnover frequencies (TOFs). To further understand the catalytic properties of these ArMs, their kinetic behaviour was evaluated with respect to the reduction of three cyclic imines: dihydroisoquinoline, harmaline, and papaverine.

View Article and Find Full Text PDF

The immobilisation of artificial metalloenzymes (ArMs) holds promise for the implementation of new biocatalytic reactions. We present the synthesis of cross-linked artificial metalloenzyme aggregates (CLArMAs) with excellent recyclability, as an alternative to carrier-based immobilisation strategies. Furthermore, iron-siderophore supramolecular anchoring facilitates redox-triggered cofactor release, enabling CLArMAs to be recharged with alternative cofactors for diverse selectivity.

View Article and Find Full Text PDF

Technologies to improve the applicability of artificial metalloenzymes (ArMs) are gaining considerable interest; one such approach is the immobilization of these biohybrid catalysts on support materials to enhance stability and enable their retention, recovery, and reuse. Here, we describe the immobilization of polyhistidine-tagged ArMs that allow the redox-controlled replacement of catalytic cofactors that have lost activity, e.g.

View Article and Find Full Text PDF

Siderophore-binding proteins from two thermophilic bacteria, Geobacillus stearothermophilus and Parageobacillus thermoglucosidasius, were identified from a search of sequence databases, cloned and overexpressed. They are homologues of the well characterized protein CjCeuE from Campylobacter jejuni. The iron-binding histidine and tyrosine residues are conserved in both thermophiles.

View Article and Find Full Text PDF

Nanozeolites with different crystallographic structures (Nano/TS1, Nano/GIS, Nano/LTA, Nano/BEA, Nano/X, and Nano-X/Ni), functionalized with (3-aminopropyl)trimethoxysilane (APTMS) and crosslinked with glutaraldehyde (GA), were studied as solid supports for Thermomyces lanuginosus lipase (TLL) immobilization. Physicochemical characterizations of the surface-functionalized nanozeolites and nanozeolite-enzyme complexes were performed using XRD, SEM, AFM, ATR-FTIR, and zeta potential measurements. The experimental enzymatic activity results indicated that the nanozeolitic supports functionalized with APTMS and GA immobilized larger amounts of enzymes and provided higher enzymatic activities, compared to unfunctionalized supports.

View Article and Find Full Text PDF

The cytotoxic response, cellular uptake, and metabolomic profile of HeLa and HaCaT cell lines treated with cobalt ferrite nanoparticles (CoFeO NPs) were investigated in this study. Cell viability assays showed low cytotoxicity caused by the uptake of the nanoparticles at 2 mg/mL. However, metabolomics revealed that these nanoparticles impacted cell metabolism even when tested at a concentration that presented low cytotoxicity according to the cell viability assay.

View Article and Find Full Text PDF