Superconducting radio-frequency (SRF) resonator cavities provide extremely high quality factors > 10 at 1-2 GHz and 2 K in large linear accelerators of high-energy particles. The maximum accelerating field of SRF cavities is limited by penetration of vortices into the superconductor. Present state-of-the-art Nb cavities can withstand up to 50 MV/m accelerating gradients and magnetic fields of 200-240 mT which destroy the low-dissipative Meissner state.
View Article and Find Full Text PDFProliferation of topological defects like vortices and dislocations plays a key role in the physics of systems with long-range order, particularly, superconductivity and superfluidity in thin films, plasticity of solids, and melting of atomic monolayers. Topological defects are characterized by their topological charge reflecting fundamental symmetries and conservation laws of the system. Conservation of topological charge manifests itself in extreme stability of static topological defects because destruction of a single defect requires overcoming a huge energy barrier proportional to the system size.
View Article and Find Full Text PDFTopological defects such as vortices, dislocations or domain walls define many important effects in superconductivity, superfluidity, magnetism, liquid crystals, and plasticity of solids. Here we address the breakdown of the topologically-protected stability of such defects driven by strong external forces. We focus on Josephson vortices that appear at planar weak links of suppressed superconductivity which have attracted much attention for electronic applications, new sources of THz radiation, and low-dissipative computing.
View Article and Find Full Text PDFPractical high-temperature superconductors must be textured to minimize the reduction of the critical current density J(gb) at misoriented grain boundaries. Partial substitution of Ca for Y in YBa(2)Cu(3)O(7-delta) has shown significant improvement in J(gb) but the mechanisms are still not well understood. Here we report atomic-scale, structural and analytical electron microscopy combined with transport measurements on 7 degrees [001]-tilt Y(0.
View Article and Find Full Text PDFWe report a mechanism of nonisothermal dendritic flux penetration in superconducting films. Our numerical and analytical analysis of coupled nonlinear Maxwell and thermal diffusion equations shows that dendritic flux pattern formation results from spontaneous branching of propagating flux filaments due to nonlocal magnetic flux diffusion and positive feedback between flux motion and Joule heating. The branching is triggered by a thermomagnetic edge instability, which causes stratification of the critical state.
View Article and Find Full Text PDF