Publications by authors named "Alex Gee"

Quantum effects in nanoscale electronic devices promise to lead to new types of functionality not achievable using classical electronic components. However, quantum behaviour also presents an unresolved challenge facing electronics at the few-nanometre scale: resistive channels start leaking owing to quantum tunnelling. This affects the performance of nanoscale transistors, with direct source-drain tunnelling degrading switching ratios and subthreshold swings, and ultimately limiting operating frequency due to increased static power dissipation.

View Article and Find Full Text PDF

Graphene nanoribbons (GNRs), nanometre-wide strips of graphene, are promising materials for fabricating electronic devices. Many GNRs have been reported, yet no scalable strategies are known for synthesizing GNRs with metal atoms and heteroaromatic units at precisely defined positions in the conjugated backbone, which would be valuable for tuning their optical, electronic and magnetic properties. Here we report the solution-phase synthesis of a porphyrin-fused graphene nanoribbon (PGNR).

View Article and Find Full Text PDF

Only single-electron transistors with a certain level of cleanliness, where all states can be properly accessed, can be used for quantum experiments. To reveal their exceptional properties, carbon nanomaterials need to be stripped down to a single element: graphene has been exfoliated into a single sheet, and carbon nanotubes can reveal their vibrational, spin and quantum coherence properties only after being suspended across trenches. Molecular graphene nanoribbons now provide carbon nanostructures with single-atom precision but suffer from poor solubility, similar to carbon nanotubes.

View Article and Find Full Text PDF

Nanoimprint lithography (NIL) is a fast, simple and high throughput technique that allows fabrication of structures with nanometre precision features at low cost. We present an advanced bilayer nanoimprint lithography approach to fabricate four terminal nanojunction devices for use in single molecule electronic studies. In the first part of this work, we demonstrate a NIL lift-off process using a bilayer resist technique that negates problems associated with metal side-wall tearing during lift-off.

View Article and Find Full Text PDF

Surface modification to obtain high dispersion stability and biocompatibility is a key factor for bio-application of upconversion nanoparticles (UCNPs). A systematic study of UCNPs modified with four hydrophilic molecules separately, comparing their dispersion stability in biological buffers and cellular biocompatibility is reported here. The results show that carboxyl-functionalized UCNPs (modified by 3,4-dihydrocinnamic acid (DHCA) or poly(monoacryloxyethyl phosphate (MAEP)) with negative surface charge have superior even-distribution in biological buffers compared to amino-functionalized UCNPs (modified by (aminomethyl)phosphonic (AMPA) or (3-Aminopropyl)triethoxysilane (APTES)) with positive surface charge.

View Article and Find Full Text PDF