Identifying protein-protein interactions (PPI's) is critical for understanding virtually all cellular molecular mechanisms. Previously, predicting PPI's was treated as a binary classification task and has commonly been solved in a supervised setting which requires a positive labeled set of known PPI's and a negative labeled set of non-interacting protein pairs. In those methods, the learner provides the likelihood of the predicted interaction, but without a confidence level associated with each prediction.
View Article and Find Full Text PDFCancer Genomics Proteomics
March 2012
Aim: A nested case-control discovery study was undertaken to test whether information within the serum peptidome can improve on the utility of CA125 for early ovarian cancer detection.
Materials And Methods: High-throughput matrix-assisted laser desorption ionisation mass spectrometry (MALDI-MS) was used to profile 295 serum samples from women pre-dating their ovarian cancer diagnosis and from 585 matched control samples. Classification rules incorporating CA125 and MS peak intensities were tested for discriminating ability.
Introduction: Detection of serum biomarkers for early diagnosis of breast cancer remains an important goal. Changes in the structure of O-linked glycans occur in all breast cancers resulting in the expression of glycoproteins that are antigenically distinct. Indeed, the serum assay widely used for monitoring disease progression in breast cancer (CA15.
View Article and Find Full Text PDFObjectives: Our objective was to test the performance of CA125 in classifying serum samples from a cohort of malignant and benign ovarian cancers and age-matched healthy controls and to assess whether combining information from matrix-assisted laser desorption/ionization (MALDI) time-of-flight profiling could improve diagnostic performance.
Materials And Methods: Serum samples from women with ovarian neoplasms and healthy volunteers were subjected to CA125 assay and MALDI time-of-flight mass spectrometry (MS) profiling. Models were built from training data sets using discriminatory MALDI MS peaks in combination with CA125 values and tested their ability to classify blinded test samples.
IEEE Trans Inf Technol Biomed
January 2011
Conformal Predictors (CPs) are machine learning algorithms that can provide predictions complemented with valid confidence measures. In medical diagnosis, such measures are highly desirable, as medical experts can gain additional information for each machine diagnosis. A risk assessment in each prediction can play an important role for medical decision making, in which the outcome can be critical for the patients.
View Article and Find Full Text PDFBackground: The serum peptidome may be a valuable source of diagnostic cancer biomarkers. Previous mass spectrometry (MS) studies have suggested that groups of related peptides discriminatory for different cancer types are generated ex vivo from abundant serum proteins by tumor-specific exopeptidases. We tested 2 complementary serum profiling strategies to see if similar peptides could be found that discriminate ovarian cancer from benign cases and healthy controls.
View Article and Find Full Text PDFPurpose: Patients with synchronous ovarian and endometrial cancers may represent cases of a single primary tumor with metastasis (SPM) or dual primary tumors (DP). The diagnosis given will influence the patient's treatment and prognosis. Currently, a diagnosis of SPM or DP is made using histologic criteria, which are frequently unable to make a definitive diagnosis.
View Article and Find Full Text PDFStat Appl Genet Mol Biol
December 2008
The paper describes an application of conformal predictors to diagnose breast cancer using proteomic mass spectrometry data provided by Leiden University Medical Center. Unlike many conventional classification systems, this approach allows us not just to classify samples, but add valid measures of confidence in our predictions for individual patients.
View Article and Find Full Text PDFBackground: High-throughput proteomic methods for disease biomarker discovery in human serum are promising, but concerns exist regarding reproducibility of results and variability introduced by sample handling. This study investigated the influence of different preanalytic handling methods on surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) protein profiles of prefractionated serum. We investigated whether older collections with longer sample transit times yield useful protein profiles, and sought to establish the most feasible collection methods for future clinical proteomic studies.
View Article and Find Full Text PDFWe focus on the problem of prediction with confidence and describe a recently developed learning algorithm called transductive confidence machine for making qualified region predictions. Its main advantage, in comparison with other classifiers, is that it is well-calibrated, with number of prediction errors strictly controlled by a given predefined confidence level. We apply the transductive confidence machine to the problems of acute leukaemia and ovarian cancer prediction using microarray and proteomics pattern diagnostics, respectively.
View Article and Find Full Text PDFWe have prospectively analysed and correlated the gene expression profiles of children presenting with acute leukaemia to the Royal London and Great Ormond Street Hospitals with morphological diagnosis, immunophenotype and karyotype. Total RNA extracted from freshly sorted blast cells was obtained from 84 lymphoblastic [acute lymphoblastic leukaemia (ALL)], 20 myeloid [acute myeloid leukaemia (AML)] and three unclassified acute leukaemias and hybridised to the high density Affymetrix U133A oligonucleotide array. Analysis of variance and significance analysis of microarrays was used to identify discriminatory genes.
View Article and Find Full Text PDFUnlabelled: In this paper we propose a new method for recognition of prokaryotic promoter regions with startpoints of transcription. The method is based on Sequence Alignment Kernel, a function reflecting the quantitative measure of match between two sequences. This kernel function is further used in Dual SVM, which performs the recognition.
View Article and Find Full Text PDFPlantProm DB, a plant promoter database, is an annotated, non-redundant collection of proximal promoter sequences for RNA polymerase II with experimentally determined transcription start site(s), TSS, from various plant species. The first release (2002.01) of PlantProm DB contains 305 entries including 71, 220 and 14 promoters from monocot, dicot and other plants, respectively.
View Article and Find Full Text PDF