Publications by authors named "Alex Gallinat"

Fermented beverages, such as wine and beer, are rich in polyphenols that have been shown to have protective effects against oxidative stress. Oxidative stress plays a central role in the pathogenesis and progression of cardiovascular disease. However, the potential benefits of fermented beverages on cardiovascular health need to be fully investigated at a molecular level.

View Article and Find Full Text PDF

Obesity is associated with metabolic disorders such as insulin resistance and type 2 diabetes mellitus (T2DM), further increasing an already heightened cardiovascular risk. Here, amongst obese class III bariatric surgery patients, we have investigated the effect of T2DM in serum and in two, same patient, adipose tissue (AT) depots through proteomic profile expression analyses. Serum and AT samples from subcutaneous (SAT) and visceral (VAT) fat were collected during bariatric surgery.

View Article and Find Full Text PDF

Heart failure (HF) is a complex disease entity with high clinical impact, poorly understood pathophysiology and scantly known miRNA-mediated epigenetic regulation. We have analysed miRNA patterns in patients with chronic HF (cHF) and a sex- and age-matched reference group and pursued an in silico system biology analysis to discern pathways involved in cHF pathophysiology. Twenty-eight miRNAs were identified in cHF that were up-regulated in the reference group, and eight of them were validated by RT-qPCR.

View Article and Find Full Text PDF

The early-onset Parkinson's disease protein DJ-1 is a multifunctional protein that plays a protective role against ischemia and reperfusion (I/R) injury and oxidative stress. Despite lacking a canonical RNA-binding domain DJ-1 exhibits RNA-binding activity and multiple transcripts have been identified. However, no functional characterization has been provided to date.

View Article and Find Full Text PDF

Cardiovascular diseases, and particularly acute myocardial infarction (MI), are the most common causes of death worldwide. Infarct size is the major predictor of clinical outcomes in MI. The Parkinson's disease associated protein, DJ-1 (also known as PARK7), is a multifunctional protein with chaperone, redox sensing and mitochondrial homeostasis activities.

View Article and Find Full Text PDF

Endothelial cells (ECs) play a central role in ischemia. ATP-Synthase is now recognized to be ectopically expressed in the cell surface of many cell types, with putative roles described in angiogenesis, proliferation, and intracellular pH regulation. DJ-1 is a multifunctional protein, involved in cell protection against ischemia, ischemia-reperfusion (I/R), and oxidative stress, that regulates mitochondrial ATP-synthase.

View Article and Find Full Text PDF

Infarct size is the major risk predictor for developing heart failure after an acute myocardial infarction (AMI). The discovery of the conditioning phenomena (i.e.

View Article and Find Full Text PDF

Aim: Using proteomics, we previously found that serum levels of glycosylated (Glyc) forms of apolipoprotein J (ApoJ), a cytoprotective and anti-oxidant protein, decrease in the early phase of acute myocardial infarction (AMI). We aimed to investigate: (i) ApoJ-Glyc intracellular distribution and secretion during ischaemia; (ii) the early changes in circulating ApoJ-Glyc during AMI; and (iii) associations between ApoJ-Glyc and residual ischaemic risk post-AMI.

Methods And Results: Glycosylated apolipoprotein J was investigated in: (i) cells from different organ/tissue origin; (ii) a pig model of AMI; (iii) de novo AMI patients (n = 38) at admission within the first 6 h of chest pain onset and without troponin T elevation at presentation (early AMI); (iv) ST-elevation myocardial infarction patients (n = 212) who were followed up for 6 months; and (v) a control group without any overt cardiovascular disease (n = 144).

View Article and Find Full Text PDF

Although recent advances have overturned the old view of the human heart as an inert postmitotic organ, it is clear that the adult heart´s capacity to regenerate after an ischemic episode is very limited. Unlike humans, zebrafish and other lower vertebrates vigorously regenerate damaged myocardium after cardiac injury. Understanding how the zebrafish is able to conserve life-long cardiac regeneration capacity while mammals lose it soon after birth is crucial for the development of new treatments for myocardial infarction.

View Article and Find Full Text PDF