The pathological accumulation of GM2 ganglioside associated with Tay-Sachs disease (TSD) and Sandhoff disease (SD) occurs in individuals who possess mutant forms of the heterodimer β-hexosaminidase A (Hex A) because of mutation of the and genes, respectively. With a lack of approved therapies, patients experience rapid neurological decline resulting in early death. A novel bicistronic vector carrying both and previously demonstrated promising results in mouse models of SD following neonatal intravenous administration, including significant reduction in GM2 accumulation, increased levels of Hex A, and a 2-fold extension of survival.
View Article and Find Full Text PDFAB-Variant GM2 gangliosidosis (ABGM2) is a rare and lethal genetic disorder caused by mutations in the gene that lead to fatal accumulation of GM2 gangliosides (GM2) in neurons of the central nervous system (CNS). encodes a transport protein known as GM2 activator (GM2A) protein, which is essential for degrading GM2 into their GM3 form. ABGM2 presents in infantile-, juvenile-, and adult-onset forms; of the three, the infantile-onset is the most prominent, and by far the most severe, as evidenced by high levels of GM2 accumulation, widespread neurodegeneration, and death by the age of 4.
View Article and Find Full Text PDFGM2 gangliosidosis is a group of genetic disorders that result in the accumulation of GM2 ganglioside (GM2) in brain cells, leading to progressive central nervous system (CNS) atrophy and premature death in patients. AB-variant GM2 gangliosidosis (ABGM2) arises from loss-of-function mutations in the GM2 activator protein (GM2AP), which is essential for the breakdown of GM2 in a key catabolic pathway required for CNS lipid homeostasis. In this study, we show that intrathecal delivery of self-complementary adeno-associated virus serotype-9 (scAAV9) harbouring a functional human transgene () can prevent GM2 accumulation in in GM2AP-deficient mice ( mice).
View Article and Find Full Text PDFSphingolipids are a specialized group of lipids essential to the composition of the plasma membrane of many cell types; however, they are primarily localized within the nervous system. The amphipathic properties of sphingolipids enable their participation in a variety of intricate metabolic pathways. Sphingoid bases are the building blocks for all sphingolipid derivatives, comprising a complex class of lipids.
View Article and Find Full Text PDFGlycosphingolipids (GSLs) are a specialized class of membrane lipids composed of a ceramide backbone and a carbohydrate-rich head group. GSLs populate lipid rafts of the cell membrane of eukaryotic cells, and serve important cellular functions including control of cell-cell signaling, signal transduction and cell recognition. Of the hundreds of unique GSL structures, anionic gangliosides are the most heavily implicated in the pathogenesis of lysosomal storage diseases (LSDs) such as Tay-Sachs and Sandhoff disease.
View Article and Find Full Text PDF