Publications by authors named "Alex Dmitrienko"

In this paper, we review recent advances in statistical methods for the evaluation of the heterogeneity of treatment effects (HTE), including subgroup identification and estimation of individualized treatment regimens, from randomized clinical trials and observational studies. We identify several types of approaches using the features introduced in Lipkovich et al (Stat Med 2017;36: 136-196) that distinguish the recommended principled methods from basic methods for HTE evaluation that typically rely on rules of thumb and general guidelines (the methods are often referred to as common practices). We discuss the advantages and disadvantages of various principled methods as well as common measures for evaluating their performance.

View Article and Find Full Text PDF

There has been much interest in the evaluation of heterogeneous treatment effects (HTE) and multiple statistical methods have emerged under the heading of personalized/precision medicine combining ideas from hypothesis testing, causal inference, and machine learning over the past 10-15 years. We discuss new ideas and approaches for evaluating HTE in randomized clinical trials and observational studies using the features introduced earlier by Lipkovich, Dmitrienko, and D'Agostino that distinguish principled methods from simplistic approaches to data-driven subgroup identification and estimating individual treatment effects and use a case study to illustrate these approaches. We identified and provided a high-level overview of several classes of modern statistical approaches for personalized/precision medicine, elucidated the underlying principles and challenges, and compared findings for a case study across different methods.

View Article and Find Full Text PDF

In this paper, we consider randomized controlled clinical trials comparing two treatments in efficacy assessment using a time to event outcome. We assume a relatively small number of candidate biomarkers available in the beginning of the trial, which may help define an efficacy subgroup which shows differential treatment effect. The efficacy subgroup is to be defined by one or two biomarkers and cut-offs that are unknown to the investigator and must be learned from the data.

View Article and Find Full Text PDF

Data-driven subgroup analysis plays an important role in clinical trials. This paper focuses on practical considerations in post-hoc subgroup investigations in the context of confirmatory clinical trials. The analysis is aimed at assessing the heterogeneity of treatment effects across the trial population and identifying patient subgroups with enhanced treatment benefit.

View Article and Find Full Text PDF

Objectives: This study aimed to characterize corrected QT (QTc) prolongation in a cohort of hospitalized patients with coronavirus disease-2019 (COVID-19) who were treated with hydroxychloroquine and azithromycin (HCQ/AZM).

Background: HCQ/AZM is being widely used to treat COVID-19 despite the known risk of QT interval prolongation and the unknown risk of arrhythmogenesis in this population.

Methods: A retrospective cohort of COVID-19 hospitalized patients treated with HCQ/AZM was reviewed.

View Article and Find Full Text PDF

Background: The analysis of subgroups in clinical trials is essential to assess differences in treatment effects for distinct patient clusters, that is, to detect patients with greater treatment benefit or patients where the treatment seems to be ineffective.

Methods: The software application subscreen (R package) has been developed to analyze the population of clinical trials in minute detail. The aim was to efficiently calculate point estimates (eg, hazard ratios) for multiple subgroups to identify groups that potentially differ from the overall trial result.

View Article and Find Full Text PDF

An important step in the development of targeted therapies is the identification and confirmation of sub-populations where the treatment has a positive treatment effect compared to a control. These sub-populations are often based on continuous biomarkers, measured at baseline. For example, patients can be classified into biomarker low and biomarker high subgroups, which are defined via a threshold on the continuous biomarker.

View Article and Find Full Text PDF

Background: The analysis of subgroups in clinical trials is essential to assess differences in treatment effects for distinct patient clusters, that is, to detect patients with greater treatment benefit or patients where the treatment seems to be ineffective.

Methods: The software application (R package) has been developed to analyze the population of clinical trials in minute detail. The aim was to efficiently calculate point estimates (eg, hazard ratios) for multiple subgroups to identify groups that potentially differ from the overall trial result.

View Article and Find Full Text PDF

Where there are a limited number of patients, such as in a rare disease, clinical trials in these small populations present several challenges, including statistical issues. This led to an EU FP7 call for proposals in 2013. One of the three projects funded was the Innovative Methodology for Small Populations Research (InSPiRe) project.

View Article and Find Full Text PDF

Background: The quality of data from clinical trials has received a great deal of attention in recent years. Of central importance is the need to protect the well-being of study participants and maintain the integrity of final analysis results. However, traditional approaches to assess data quality have come under increased scrutiny as providing little benefit for the substantial cost.

View Article and Find Full Text PDF

Clinical trials with data-driven decision rules often pursue multiple clinical objectives such as the evaluation of several endpoints or several doses of an experimental treatment. These complex analysis strategies give rise to "multivariate" multiplicity problems with several components or sources of multiplicity. A general framework for defining gatekeeping procedures in clinical trials with adaptive multistage designs is proposed in this paper.

View Article and Find Full Text PDF

It is increasingly common to encounter complex multiplicity problems with several multiplicity components in confirmatory Phase III clinical trials. These components are often based on several endpoints (primary and secondary endpoints) and several dose-control comparisons. When constructing a multiplicity adjustment in these settings, it is important to control the Type I error rate over all multiplicity components.

View Article and Find Full Text PDF

The general topic of subgroup identification has attracted much attention in the clinical trial literature due to its important role in the development of tailored therapies and personalized medicine. Subgroup search methods are commonly used in late-phase clinical trials to identify subsets of the trial population with certain desirable characteristics. Post-hoc or exploratory subgroup exploration has been criticized for being extremely unreliable.

View Article and Find Full Text PDF

Given the importance of addressing multiplicity issues in confirmatory clinical trials, several recent publications focused on the general goal of identifying most appropriate methods for multiplicity adjustment in each individual setting. This goal can be accomplished using the Clinical Scenario Evaluation approach. This approach encourages trial sponsors to perform comprehensive assessments of applicable analysis strategies such as multiplicity adjustments under all plausible sets of statistical assumptions using relevant evaluation criteria.

View Article and Find Full Text PDF

Given the importance of addressing multiplicity issues in confirmatory clinical trials, several recent publications focused on the general goal of identifying most appropriate methods for multiplicity adjustment in each individual setting. This goal can be accomplished using the Clinical Scenario Evaluation approach. This approach encourages trial sponsors to perform comprehensive assessments of applicable analysis strategies such as multiplicity adjustments under all plausible sets of statistical assumptions using relevant evaluation criteria.

View Article and Find Full Text PDF

This paper deals with the general topic of subgroup analysis in late-stage clinical trials with emphasis on multiplicity considerations. The discussion begins with multiplicity issues arising in the context of exploratory subgroup analysis, including principled approaches to subgroup search that are applied as part of subgroup exploration exercises as well as in adaptive biomarker-driven designs. Key considerations in confirmatory subgroup analysis based on one or more pre-specified patient populations are reviewed, including a survey of multiplicity adjustment methods recommended in multi-population phase III clinical trials.

View Article and Find Full Text PDF

It is well known that both the direction and magnitude of the treatment effect in clinical trials are often affected by baseline patient characteristics (generally referred to as biomarkers). Characterization of treatment effect heterogeneity plays a central role in the field of personalized medicine and facilitates the development of tailored therapies. This tutorial focuses on a general class of problems arising in data-driven subgroup analysis, namely, identification of biomarkers with strong predictive properties and patient subgroups with desirable characteristics such as improved benefit and/or safety.

View Article and Find Full Text PDF

Background: Neuromyelitis optica spectrum disorder (NMOSD) is a rare, disabling autoimmune disorder of the central nervous system. Clinical trials in NMOSD present unique design and statistical challenges to adequately determine treatment effect and to minimize risk.

Methods: The N-MOmentum trial (NCT02200770) is evaluating the efficacy and safety of MEDI-551, an anti-CD 19 B-cell depleting monoclonal antibody, in patients with NMOSD and employs a number of unique design features.

View Article and Find Full Text PDF

The article discusses clinical trial optimization problems in the context of mid- to late-stage drug development. Using the Clinical Scenario Evaluation approach, main objectives of clinical trial optimization are formulated, including selection of clinically relevant optimization criteria, identification of sets of optimal and nearly optimal values of the parameters of interest, and sensitivity assessments. The paper focuses on a class of optimization criteria arising in clinical trials with several competing goals, termed tradeoff-based optimization criteria, and discusses key considerations in constructing and applying tradeoff-based criteria.

View Article and Find Full Text PDF

Important objectives in the development of stratified medicines include the identification and confirmation of subgroups of patients with a beneficial treatment effect and a positive benefit-risk balance. We report the results of a literature review on methodological approaches to the design and analysis of clinical trials investigating a potential heterogeneity of treatment effects across subgroups. The identified approaches are classified based on certain characteristics of the proposed trial designs and analysis methods.

View Article and Find Full Text PDF