Developing efficient, economical, and stable catalysts for the oxygen evolution reaction is pivotal for producing large-scale green hydrogen in the future. Herein, a vanadium-doped nickel-iron oxide supported on nickel foam (V-NiFeO/NF) is introduced, and synthesized via a facile hydrothermal method as a highly efficient electrocatalyst for water electrolysis. X-ray photoelectron and absorption spectroscopies reveal a synergistic interaction between the vanadium dopant and nickel/iron in the host material, which tunes the electronic structure of NiFeO to increase the number of electrochemically active sites.
View Article and Find Full Text PDFWe report the synthesis of four homoleptic thorium(iv) amidate complexes as single-source molecular precursors for thorium dioxide. Each can be sublimed at atmospheric pressure, with the substituents on the amidate ligands significantly impacting their volatility and thermal stability. These complexes decompose via alkene elimination to give ThO2 without need for a secondary oxygen source.
View Article and Find Full Text PDFEvaluating the nature of chemical bonding for actinide elements represents one of the most important and long-standing problems in actinide science. We directly address this challenge and contribute a Cl K-edge X-ray absorption spectroscopy and relativistic density functional theory study that quantitatively evaluates An-Cl covalency in AnCl (An = Th, U, Np, Pu). The results showed significant mixing between Cl 3p- and An 5f- and 6d-orbitals (t*/t* and t*/e *), with the 6d-orbitals showing more pronounced covalent bonding than the 5f-orbitals.
View Article and Find Full Text PDF