Fibrotic diseases cover a spectrum of systemic and organ-specific maladies that affect a large portion of the population, currently without cure. The shared characteristic these diseases feature is their uncontrollable fibrogenesis deemed responsible for the accumulated damage in the susceptible tissues. Idiopathic Pulmonary Fibrosis, an interstitial lung disease, is one of the most common and studied fibrotic diseases and still remains an active research target.
View Article and Find Full Text PDFMotivation: Understanding the underlying biological mechanisms and respective interactions of a disease remains an elusive, time consuming and costly task. Computational methodologies that propose pathway/mechanism communities and reveal respective relationships can be of great value as they can help expedite the process of identifying how perturbations in a single pathway can affect other pathways.
Results: We present a random-walks-based methodology called PathWalks, where a walker crosses a pathway-to-pathway network under the guidance of a disease-related map.
Drug repurposing techniques allow existing drugs to be tested against diseases outside their initial spectrum, resulting in reduced cost and eliminating the long time-frames of new drug development. In silico drug repurposing further speeds up the process either by proposing drugs suitable to invert the transcriptomic profile of a disease or by indicating drugs based on their common targets or structural similarity with other drugs with similar mode of action. Such methods usually return a number of potential repurposed drugs that need to be tested against the disease in in vitro, pre-clinical and clinical studies.
View Article and Find Full Text PDF