Food waste is an abundant and inexpensive resource for the production of renewable fuels. Biocrude yields obtained from hydrothermal liquefaction (HTL) of food waste can be boosted using hydroxyapatite (HAP) as an inexpensive and abundant catalyst. Combining HAP with an inexpensive homogeneous base increased biocrude yield from 14 ± 1 to 37 ± 3%, resulting in the recovery of 49 ± 2% of the energy contained in the food waste feed.
View Article and Find Full Text PDFA catalytic rocket stove was developed to reduce emissions and improve efficiency compared to open cooking fires or traditional semienclosed cookstoves, called poyos, typical of rural Guatemala. Traditional stoves often emit particulate matter and carbon monoxide at sufficient levels to cause respiratory illnesses and other health problems. Using focus group results, the stove was tailored to the needs of Guatemalan cooks.
View Article and Find Full Text PDFApproximately three billion people cook with solid fuels, mostly wood, on open fires or rudimentary stoves. These traditional cooking methods produce particulate matter and carbon monoxide known to cause significant respiratory health problems, especially among women and children, who often have the highest exposure. In this work, an inexpensive potassium-based catalyst was incorporated in a chimneyless biomass cookstove to reduce harmful emissions through catalytic oxidation.
View Article and Find Full Text PDFAt high thermal flux and temperatures of approximately 500 °C, lignocellulosic biomass transforms to a reactive liquid intermediate before evaporating to condensable bio-oil for downstream upgrading to renewable fuels and chemicals. However, the existence of a fraction of nonvolatile compounds in condensed bio-oil diminishes the product quality and, in the case of inorganic materials, catalyzes undesirable aging reactions within bio-oil. In this study, ablative pyrolysis of crystalline cellulose was evaluated, with and without doped calcium, for the generation of inorganic-transporting aerosols by reactive boiling ejection from liquid intermediate cellulose.
View Article and Find Full Text PDFThe condition of heat transfer to lignocellulosic biomass particles during thermal processing at high temperature (>400 °C) dramatically alters the yield and quality of renewable energy and fuels. In this work, crystalline cellulose particles were discovered to lift off heated surfaces by high speed photography similar to the Leidenfrost effect in hot, volatile liquids. Order of magnitude variation in heat transfer rates and cellulose particle lifetimes was observed as intermediate liquid cellulose droplets transitioned from low temperature wetting (500-600 °C) to fully de-wetted, skittering droplets on polished surfaces (>700 °C).
View Article and Find Full Text PDFCurrent research of complex chemical systems, including biomass pyrolysis, petroleum refining, and wastewater remediation requires analysis of large analyte mixtures (>100 compounds). Quantification of each carbon-containing analyte by existing methods (flame ionization detection) requires extensive identification and calibration. In this work, we describe an integrated microreactor system called the Quantitative Carbon Detector (QCD) for use with current gas chromatography techniques for calibration-free quantitation of analyte mixtures.
View Article and Find Full Text PDFFast pyrolysis of woody biomass is a promising process capable of producing renewable transportation fuels to replace gasoline, diesel, and chemicals currently derived from nonrenewable sources. However, biomass pyrolysis is not yet economically viable and requires significant optimization before it can contribute to the existing oil-based transportation system. One method of optimization uses detailed kinetic models for predicting the products of biomass fast pyrolysis, which serve as the basis for the design of pyrolysis reactors capable of producing the highest value products.
View Article and Find Full Text PDF