Cellular functions crucially depend on the precise execution of complex biochemical reactions taking place on the chromatin fiber in the tightly packed environment of the cell nucleus. Despite the availability of large datasets probing this process from multiple angles, bottom-up frameworks that allow the incorporation of the sequence-specific nature of biochemistry in a unified model of 3D chromatin structure remain scarce. Here, we propose Sequence-Enhanced Magnetic Polymer (SEMPER), a novel stochastic polymer model that naturally incorporates observational data about sequence-driven biochemical processes, such as binding of transcription factor proteins, in a 3D model of chromatin structure.
View Article and Find Full Text PDF