Publications by authors named "Alex C Seastram"

An electrochemical method for the azidocyanation of alkenes 1,4-nitrile migration has been developed. This organic oxidant free method is applicable across various alkene containing cyanohydrins, and provides access to a broad range of synthetically useful 1,2-azidonitriles (28 examples). This methodology was extended to an electrochemical alkene sulfonylcyanation procedure, as well as to access a trifunctionalized hexanenitrile from a malononitrile starting material.

View Article and Find Full Text PDF

Herein, we report a new electrochemical method for alkoxy radical generation from alcohols using a proton-coupled electron transfer (PCET) approach, showcased via the deconstructive functionalization of cycloalkanols. The electrochemical method is applicable across a diverse array of substituted cycloalkanols, accessing a broad range of synthetically useful distally functionalized ketones. The orthogonal derivatization of the products has been demonstrated through chemoselective transformations, and the electrochemical process has been performed on a gram scale in continuous single-pass flow.

View Article and Find Full Text PDF

Efforts to generate organomanganese reagents under ball-milling conditions have led to the serendipitous discovery that manganese metal can mediate the reductive dimerization of arylidene malonates. The newly uncovered process has been optimized and its mechanism explored using CV measurements, radical trapping experiments, EPR spectroscopy, and solution control reactions. This unique reactivity can also be translated to solution whereupon pre-milling of the manganese is required.

View Article and Find Full Text PDF

The ability to conduct N-heterocyclic carbene-catalysed acyl anion chemistry under ball-milling conditions is reported for the first time. This process has been exemplified through applications to intermolecular-benzoin, intramolecular-benzoin, intermolecular-Stetter and intramolecular-Stetter reactions including asymmetric examples and demonstrates that this mode of mechanistically complex organocatalytic reaction can operate under solvent-minimised conditions.

View Article and Find Full Text PDF

A manganese-catalyzed electrochemical deconstructive chlorination of cycloalkanols has been developed. This electrochemical method provides access to alkoxy radicals from alcohols and exhibits a broad substrate scope, with various cyclopropanols and cyclobutanols converted into synthetically useful β- and γ-chlorinated ketones (40 examples). Furthermore, the combination of recirculating flow electrochemistry and continuous inline purification was employed to access products on a gram scale.

View Article and Find Full Text PDF