Publications by authors named "Alex Burnstine-Townley"

In this study, sliver (Ag) and gold (Au) nanoparticles (NPs) were embedded on poly (acrylic acid) (PAA)/poly (allylamine) hydrochloride (PAH) hydrogel fibers for improved electrochemical oxidation (EO) of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) removal. The NPs-loaded PAA/PAHs shows the better charge transport compared to the ceramic nanofiber membranes (CNM) electrodes. At 10 mA cm of current density, the Ag-PAA/PAH electrodes showed a faster removal of PFAS compared to the Ag-CNM electrode probably due to large surface area-volume ratio and high porosity from the hydrogel.

View Article and Find Full Text PDF

Light is a convenient source of energy and the heart of light-harvesting natural systems and devices. Here, we show light-modulation of both the chemical nature and ionic charge carrier concentration within a protein-based biopolymer that was covalently functionalized with photoacids or photobases. We explore the capability of the biopolymer-tethered photoacids and photobases to undergo excited-state proton transfer and capture, respectively.

View Article and Find Full Text PDF

Dynamic self-assembly of nanoparticles (NPs) for the formation of aggregates takes place out of thermodynamic equilibrium and is sustained by external energy supply. Herein, we present light energy driven dynamic self-assembly process of AuNPs, decorated with pH sensitive ligands. The process is being controlled by the use of photoacids and photobases that undergo excited state proton or hydroxide transfer, respectively, due to their large p K change between their ground and excited electronic states.

View Article and Find Full Text PDF

A library of 12 dibenzo- and naphtho-fluoranthene polycyclic aromatic hydrocarbons (PAHs) with MW = 302 (CH) was synthesized via a Pd-catalyzed fluoranthene ring-closing reaction. By understanding the various modes by which the palladium migrates during the transformation, structural rearrangements were bypassed, obtaining pure PAHs in high yields. Spectroscopic and electrochemical characterization demonstrated the profound diversity in the electronic structures between isomers.

View Article and Find Full Text PDF