We have created an analog of a black hole in a Bose-Einstein condensate. In this sonic black hole, sound waves, rather than light waves, cannot escape the event horizon. A steplike potential accelerates the flow of the condensate to velocities which cross and exceed the speed of sound by an order of magnitude.
View Article and Find Full Text PDFWe report single-site resolution in a lattice with tunneling between sites, allowing for an in situ study of stochastic losses. The ratio of the loss rate to the tunneling rate is seen to determine the number fluctuations, and the overall profile of the lattice. Sub-Poissonian number fluctuations are observed.
View Article and Find Full Text PDF