Publications by authors named "Alex Andonian"

Videos capture events that typically contain multiple sequential, and simultaneous, actions even in the span of only a few seconds. However, most large-scale datasets built to train models for action recognition in video only provide a single label per video. Consequently, models can be incorrectly penalized for classifying actions that exist in the videos but are not explicitly labeled and do not learn the full spectrum of information present in each video in training.

View Article and Find Full Text PDF

Generative adversarial networks (GANs) enable computers to learn complex data distributions and sample from these distributions. When applied to the visual domain, this allows artificial, yet photorealistic images to be synthesized. Their success at this very challenging task triggered an explosion of research within the field of artificial intelligence (AI), yielding various new GAN findings and applications.

View Article and Find Full Text PDF

We present the Moments in Time Dataset, a large-scale human-annotated collection of one million short videos corresponding to dynamic events unfolding within three seconds. Modeling the spatial-audio-temporal dynamics even for actions occurring in 3 second videos poses many challenges: meaningful events do not include only people, but also objects, animals, and natural phenomena; visual and auditory events can be symmetrical in time ("opening" is "closing" in reverse), and either transient or sustained. We describe the annotation process of our dataset (each video is tagged with one action or activity label among 339 different classes), analyze its scale and diversity in comparison to other large-scale video datasets for action recognition, and report results of several baseline models addressing separately, and jointly, three modalities: spatial, temporal and auditory.

View Article and Find Full Text PDF

The bone morphogenetic protein (BMP) signaling pathway is essential for normal development and tissue homeostasis. BMP signal transduction occurs when ligands interact with a complex of type 1 and type 2 receptors to activate downstream transcription factors. It is well established that a single BMP receptor may bind multiple BMP ligands with varying affinity, and this has been largely attributed to conformation at the amino acid level.

View Article and Find Full Text PDF