Dietary Restriction (DR) is one of the most popular anti-ageing interventions; recently, Machine Learning (ML) has been explored to identify potential DR-related genes among ageing-related genes, aiming to minimize costly wet lab experiments needed to expand our knowledge on DR. However, to train a model from positive (DR-related) and negative (non-DR-related) examples, the existing ML approach naively labels genes without known DR relation as negative examples, assuming that lack of DR-related annotation for a gene represents evidence of absence of DR-relatedness, rather than absence of evidence. This hinders the reliability of the negative examples (non-DR-related genes) and the method's ability to identify novel DR-related genes.
View Article and Find Full Text PDFRecently, there has been a growing interest in the development of pharmacological interventions targeting ageing, as well as in the use of machine learning for analysing ageing-related data. In this work, we use machine learning methods to analyse data from DrugAge, a database of chemical compounds (including drugs) modulating lifespan in model organisms. To this end, we created four types of datasets for predicting whether or not a compound extends the lifespan of (the most frequent model organism in DrugAge), using four different types of predictive biological features, based on: compound-protein interactions, interactions between compounds and proteins encoded by ageing-related genes, and two types of terms annotated for proteins targeted by the compounds, namely Gene Ontology (GO) terms and physiology terms from the WormBase's Phenotype Ontology.
View Article and Find Full Text PDFBackground: Dietary restriction (DR) is the most studied pro-longevity intervention; however, a complete understanding of its underlying mechanisms remains elusive, and new research directions may emerge from the identification of novel DR-related genes and DR-related genetic features.
Results: This work used a Machine Learning (ML) approach to classify ageing-related genes as DR-related or NotDR-related using 9 different types of predictive features: PathDIP pathways, two types of features based on KEGG pathways, two types of Protein-Protein Interactions (PPI) features, Gene Ontology (GO) terms, Genotype Tissue Expression (GTEx) expression features, GeneFriends co-expression features and protein sequence descriptors. Our findings suggested that features biased towards curated knowledge (i.
By combining transcriptomic data with other data sources, inferences can be made about functional changes during ageing. Thus, we conducted a meta-analysis on 127 publicly available microarray and RNA-Seq datasets from mice, rats and humans, identifying a transcriptomic signature of ageing across species and tissues. Analyses on subsets of these datasets produced transcriptomic signatures of ageing for brain, heart and muscle.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
January 2022
Understanding the ageing process is a very challenging problem for biologists. To help in this task, there has been a growing use of classification methods (from machine learning) to learn models that predict whether a gene influences the process of ageing or promotes longevity. One type of predictive feature often used for learning such classification models is Protein-Protein Interaction (PPI) features.
View Article and Find Full Text PDFMotivation: One way to identify genes possibly associated with ageing is to build a classification model (from the machine learning field) capable of classifying genes as associated with multiple age-related diseases. To build this model, we use a pre-compiled list of human genes associated with age-related diseases and apply a novel Deep Neural Network (DNN) method to find associations between gene descriptors (e.g.
View Article and Find Full Text PDFBackground: The Critical Assessment of Functional Annotation (CAFA) is an ongoing, global, community-driven effort to evaluate and improve the computational annotation of protein function.
Results: Here, we report on the results of the third CAFA challenge, CAFA3, that featured an expanded analysis over the previous CAFA rounds, both in terms of volume of data analyzed and the types of analysis performed. In a novel and major new development, computational predictions and assessment goals drove some of the experimental assays, resulting in new functional annotations for more than 1000 genes.
Biologists very often use enrichment methods based on statistical hypothesis tests to identify gene properties that are significantly over-represented in a given set of genes of interest, by comparison with a 'background' set of genes. These enrichment methods, although based on rigorous statistical foundations, are not always the best single option to identify patterns in biological data. In many cases, one can also use classification algorithms from the machine-learning field.
View Article and Find Full Text PDFAn important problem in bioinformatics consists of identifying the most important features (or predictors), among a large number of features in a given classification dataset. This problem is often addressed by using a machine learning-based feature ranking method to identify a small set of top-ranked predictors (i.e.
View Article and Find Full Text PDFMotivation: This work uses the Random Forest (RF) classification algorithm to predict if a gene is over-expressed, under-expressed or has no change in expression with age in the brain. RFs have high predictive power, and RF models can be interpreted using a feature (variable) importance measure. However, current feature importance measures evaluate a feature as a whole (all feature values).
View Article and Find Full Text PDFIncreasing age is a risk factor for many diseases; therefore developing pharmacological interventions that slow down ageing and consequently postpone the onset of many age-related diseases is highly desirable. In this work we analyse data from the DrugAge database, which contains chemical compounds and their effect on the lifespan of model organisms. Predictive models were built using the machine learning method random forests to predict whether or not a chemical compound will increase Caenorhabditis elegans' lifespan, using as features Gene Ontology (GO) terms annotated for proteins targeted by the compounds and chemical descriptors calculated from each compound's chemical structure.
View Article and Find Full Text PDFBroadly speaking, supervised machine learning is the computational task of learning correlations between variables in annotated data (the training set), and using this information to create a predictive model capable of inferring annotations for new data, whose annotations are not known. Ageing is a complex process that affects nearly all animal species. This process can be studied at several levels of abstraction, in different organisms and with different objectives in mind.
View Article and Find Full Text PDFEfflux by the ATP-binding cassette (ABC) transporters affects the pharmacokinetic profile of drugs and it has been implicated in drug-drug interactions as well as its major role in multi-drug resistance in cancer. It is therefore important for the pharmaceutical industry to be able to understand what phenomena rule ABC substrate recognition. Considering a high degree of substrate overlap between various members of ABC transporter family, it is advantageous to employ a multi-label classification approach where predictions made for one transporter can be used for modeling of the other ABC transporters.
View Article and Find Full Text PDFMotivation: The incidence of ageing-related diseases has been constantly increasing in the last decades, raising the need for creating effective methods to analyze ageing-related protein data. These methods should have high predictive accuracy and be easily interpretable by ageing experts. To enable this, one needs interpretable classification models (supervised machine learning) and features with rich biological meaning.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
October 2017
This study comprehensively evaluates the performance of five types of probabilistic hierarchical classification methods used for predicting Gene Ontology (GO) terms related to ageing. Of those tested, a new hybrid of a Local Hierarchical Classifier (LHC) and the Predictive Clustering Tree algorithm (LHC-PCT) had the best predictive accuracy results. We also tested the impact of two types of variations in most hierarchical classification algorithms, namely: (a) changing the base algorithm (we tested Naive Bayes and Support Vector Machines), and the impact of (b) using or not the Correlation based Feature Selection (CFS) algorithm in a pre-processing step.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
June 2016
Ageing is a highly complex biological process that is still poorly understood. With the growing amount of ageing-related data available on the web, in particular concerning the genetics of ageing, it is timely to apply data mining methods to that data, in order to try to discover novel patterns that may assist ageing research. In this work, we introduce new hierarchical feature selection methods for the classification task of data mining and apply them to ageing-related data from four model organisms: Caenorhabditis elegans (worm), Saccharomyces cerevisiae (yeast), Drosophila melanogaster (fly), and Mus musculus (mouse).
View Article and Find Full Text PDFMost ant colony optimization (ACO) algorithms for inducing classification rules use a ACO-based procedure to create a rule in a one-at-a-time fashion. An improved search strategy has been proposed in the cAnt-Miner[Formula: see text] algorithm, where an ACO-based procedure is used to create a complete list of rules (ordered rules), i.e.
View Article and Find Full Text PDFBackground: Volume of distribution is an important pharmacokinetic property that indicates the extent of a drug's distribution in the body tissues. This paper addresses the problem of how to estimate the apparent volume of distribution at steady state (Vss) of chemical compounds in the human body using decision tree-based regression methods from the area of data mining (or machine learning). Hence, the pros and cons of several different types of decision tree-based regression methods have been discussed.
View Article and Find Full Text PDFOral absorption of compounds depends on many physiological, physiochemical and formulation factors. Two important properties that govern oral absorption are in vitro permeability and solubility, which are commonly used as indicators of human intestinal absorption. Despite this, the nature and exact characteristics of the relationship between these parameters are not well understood.
View Article and Find Full Text PDFThe biopharmaceutical classification system (BCS) is now well established and utilized for the development and biowaivers of immediate oral dosage forms. The prediction of BCS class can be carried out using multilabel classification. Unlike single label classification, multilabel classification methods predict more than one class label at the same time.
View Article and Find Full Text PDFJ Chem Inf Model
October 2013
There are currently thousands of molecular descriptors that can be calculated to represent a chemical compound. Utilizing all molecular descriptors in Quantitative Structure-Activity Relationships (QSAR) modeling can result in overfitting, decreased interpretability, and thus reduced model performance. Feature selection methods can overcome some of these problems by drastically reducing the number of molecular descriptors and selecting the molecular descriptors relevant to the property being predicted.
View Article and Find Full Text PDFThis study reports the empirical analysis of a hyper-heuristic evolutionary algorithm that is capable of automatically designing top-down decision-tree induction algorithms. Top-down decision-tree algorithms are of great importance, considering their ability to provide an intuitive and accurate knowledge representation for classification problems. The automatic design of these algorithms seems timely, given the large literature accumulated over more than 40 years of research in the manual design of decision-tree induction algorithms.
View Article and Find Full Text PDFClass imbalance occurs frequently in drug discovery data sets. In oral absorption data sets, in the literature, there are considerably more highly absorbed compounds compared to poorly absorbed compounds. This produces models that are biased toward highly absorbed compounds which lack generalization to industry settings where more early stage drug candidates are poorly absorbed.
View Article and Find Full Text PDFThis study presents regression and classification models to predict human intestinal absorption of 645 drug and drug like compounds using percentage human intestinal values from the published dataset by Hou et al. (2007c). The problem with this dataset and other datasets in the literature is there are more highly than poorly absorbed compounds.
View Article and Find Full Text PDF