Publications by authors named "Alessio Zippo"

Metastasis arises from disseminated tumour cells (DTCs) that are characterized by intrinsic phenotypic plasticity and the capability of seeding to secondary organs. DTCs can remain latent for years before giving rise to symptomatic overt metastasis. In this context, DTCs fluctuate between a quiescent and proliferative state in response to systemic and microenvironmental signals including immune-mediated surveillance.

View Article and Find Full Text PDF

Over the past decade, research has revealed biomolecular condensates' relevance in diverse cellular functions. Through a phase separation process, they concentrate macromolecules in subcompartments shaping the cellular organization and physiology. In the nucleus, biomolecular condensates assemble relevant biomolecules that orchestrate gene expression.

View Article and Find Full Text PDF

Background: Neurodevelopmental disorders (NDDs) are heterogeneous conditions due to alterations of a variety of molecular mechanisms and cell dysfunctions. SETD5 haploinsufficiency leads to NDDs due to chromatin defects. Epigenetic basis of NDDs has been reported in an increasing number of cases while mitochondrial dysfunctions are more common within NDD patients than in the general population.

View Article and Find Full Text PDF

The polycomb group (PcG) proteins play a central role in the maintenance of a repressive state of gene expression. Recent findings demonstrate that PcG components are organized into nuclear condensates, contributing to the reshaping of chromatin architecture in physiological and pathological conditions, thus affecting the nuclear mechanics. In this context, direct stochastic optical reconstruction microscopy (dSTORM) provides an effective tool to achieve a detailed characterization of PcG condensates by visualizing them at a nanometric level.

View Article and Find Full Text PDF
Article Synopsis
  • Haploinsufficiency of a gene related to histone methyltransferase causes intellectual disability and Autism Spectrum Disorder (ASD).
  • Zebrafish mutants created using CRISPR/Cas9 show defects in social behavior, including poor shoaling and lack of interest in social interactions.
  • Treatment with risperidone improves social interest, and molecular analysis suggests reduced synaptic function could explain the observed social impairments, making zebrafish a good model for drug screening in ASD.
View Article and Find Full Text PDF

Unlabelled: Glioblastoma (GBM) is a common and deadly form of brain tumor in adults. Dysregulated metabolism in GBM offers an opportunity to deploy metabolic interventions as precise therapeutic strategies. To identify the molecular drivers and the modalities by which different molecular subgroups of GBM exploit metabolic rewiring to sustain tumor progression, we interrogated the transcriptome, the metabolome, and the glycoproteome of human subgroup-specific GBM sphere-forming cells (GSC).

View Article and Find Full Text PDF

Single-cell imaging and sorting are critical technologies in biology and clinical applications. The power of these technologies is increased when combined with microfluidics, fluorescence markers, and machine learning. However, this quest faces several challenges.

View Article and Find Full Text PDF

Breast cancer (BC) is the second cause of cancer-related deceases in the worldwide female population. Despite the successful treatment advances, 25% of BC develops resistance to current therapeutic regimens, thereby remaining a major hurdle for patient management. Current therapies, targeting the molecular events underpinning the adaptive resistance, still require effort to improve BC treatment.

View Article and Find Full Text PDF

Medulloblastoma (MB), one of the most malignant brain tumors of childhood, comprises distinct molecular subgroups, with p53 mutant sonic hedgehog-activated (SHH-activated) MB patients having a very severe outcome that is associated with unfavorable histological large cell/anaplastic (LC/A) features. To identify the molecular underpinnings of this phenotype, we analyzed a large cohort of MB developing in p53-deficient Ptch+/- SHH mice that, unexpectedly, showed LC/A traits that correlated with mTORC1 hyperactivation. Mechanistically, mTORC1 hyperactivation was mediated by a decrease in the p53-dependent expression of mTORC1 negative regulator Tsc2.

View Article and Find Full Text PDF

Cancer is a group of heterogeneous diseases that results from the occurrence of genetic alterations combined with epigenetic changes and environmental stimuli that increase cancer cell plasticity. Indeed, multiple cancer cell populations coexist within the same tumour, favouring cancer progression and metastatic dissemination as well as drug resistance, thereby representing a major obstacle for treatment. Epigenetic changes contribute to the onset of intra-tumour heterogeneity (ITH) as they facilitate cell adaptation to perturbation of the tumour microenvironment.

View Article and Find Full Text PDF

MYC is a transcription factor playing multiple functions both in physiological and pathological settings. Biochemical characterizations, combined with the analyses of MYC chromatin binding, have shown that its pleiotropic activity depends on the chromatin context and its protein-protein interactions with different cofactors. In order to determine the contribution of MYC in a certain biological condition, it would be relevant to analyze the concomitant binding of MYC and its associated proteins, in relationship to the chromatin environment.

View Article and Find Full Text PDF

Objective: Cancer stem cells are responsible for tumour spreading and relapse. Human epidermal growth factor receptor 2 (HER2) expression is a negative prognostic factor in colorectal cancer (CRC) and a potential target in tumours carrying the gene amplification. Our aim was to define the expression of HER2 in colorectal cancer stem cells (CR-CSCs) and its possible role as therapeutic target in CRC resistant to anti- epidermal growth factor receptor (EGFR) therapy.

View Article and Find Full Text PDF

The genetic elements required to tune gene expression are partitioned in active and repressive nuclear condensates. Chromatin compartments include transcriptional clusters whose dynamic establishment and functioning depend on multivalent interactions occurring among transcription factors, cofactors and basal transcriptional machinery. However, how chromatin players contribute to the assembly of transcriptional condensates is poorly understood.

View Article and Find Full Text PDF

Cells respond to starvation by shutting down protein synthesis and by activating catabolic processes, including autophagy, to recycle nutrients. This two-pronged response is mediated by the integrated stress response (ISR) through phosphorylation of eIF2α, which represses protein translation, and by inhibition of mTORC1 signaling, which promotes autophagy also through a stress-responsive transcriptional program. Implementation of such a program, however, requires protein synthesis, thus conflicting with general repression of translation.

View Article and Find Full Text PDF

Single-cell analysis techniques are fundamental to study the heterogeneity of cellular populations, which is the basis to understand several biomedical mechanisms. Light-sheet fluorescence microscopy is a powerful technique for obtaining high-resolution imaging of individual cells, but the complexity of the setup and the sample mounting procedures limit its overall throughput. In our work, we present an optofluidic microscope-on-chip with integrated microlenses for light-sheet shaping and with a fluidic microchannel that allows the automatic and continuous delivery of samples of a few tens of microns in size.

View Article and Find Full Text PDF

The transition of neural progenitors to differentiated postmitotic neurons is mainly considered irreversible in physiological conditions. In the present work, we show that Shh pathway activation through SmoM2 expression promotes postmitotic neurons dedifferentiation, re-entering in the cell cycle and originating medulloblastoma in vivo. Notably, human adult patients present inactivating mutations of the chromatin reader BRPF1 that are associated with SMO mutations and absent in pediatric and adolescent patients.

View Article and Find Full Text PDF

Mutations in one SETD5 allele are genetic causes of intellectual disability and autistic spectrum disorders. However, the mechanisms by which SETD5 regulates brain development and function remain largely elusive. Herein, we found that Setd5 haploinsufficiency impairs the proliferative dynamics of neural progenitors and synaptic wiring of neurons, ultimately resulting in behavioral deficits in mice.

View Article and Find Full Text PDF

Achaete-scute homolog 1 gene (ASCL1) is a gene classifier for the proneural (PN) transcriptional subgroup of glioblastoma (GBM) that has a relevant role in the neuronal-like differentiation of GBM cancer stem cells (CSCs) through the activation of a PN gene signature. Besides prototypical ASCL1 PN target genes, the molecular effectors mediating ASCL1 function in regulating GBM differentiation and, most relevantly, subgroup specification are currently unknown. Here we report that ASCL1 not only promotes the acquisition of a PN phenotype in CSCs by inducing a glial-to-neuronal lineage switch but also concomitantly represses mesenchymal (MES) features by directly downregulating the expression of N-Myc downstream-regulated gene 1 (NDRG1), which we propose as a novel gene classifier of MES GBMs.

View Article and Find Full Text PDF

The original version of this Article contained an error in the spelling of the author Miriam Gaggianesi, which was incorrectly given as Miriam Giaggianesi. Furthermore, the affiliation details for Gabriella Gaudioso, Valentina Vaira, and Silvano Bosari incorrectly omitted 'Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy'. Finally, the affiliation details for Alice Turdo, Miriam Gaggianesi, Aurora Chinnici and Elisa Lipari were incorrectly given as 'Dipartimento di Biotecnologie Mediche e Medicina Legale Sezione di Biochimica Medica, Facoltà di Medicina e Chirurgia, Policlinico "P.

View Article and Find Full Text PDF

Accumulating evidences indicate that many tumors rely on subpopulations of cancer stem cells (CSCs) with the ability to propagate malignant clones indefinitely and to produce an overt cancer. Of importance, CSCs seem to be more resistant to the conventional cytotoxic treatments, driving tumor growth and contributing to relapse. CSCs can originate from normal committed cells which undergo tumor-reprogramming processes and reacquire a stem cell-like phenotype.

View Article and Find Full Text PDF

Cancer heterogeneity arises during tumor progression as a consequence of genetic insults, environmental cues, and reversible changes in the epigenetic state, favoring tumor cell plasticity. The role of enhancer reprogramming is emerging as a relevant field in cancer biology as it supports adaptation of cancer cells to those environmental changes encountered during tumor progression and metastasis seeding. In this review, we describe the cancer-related alterations that drive oncogenic enhancer activity, leading to dysregulated transcriptional programs.

View Article and Find Full Text PDF

Breast cancer consists of highly heterogeneous tumors, whose cell of origin and driver oncogenes are difficult to be uniquely defined. Here we report that MYC acts as tumor reprogramming factor in mammary epithelial cells by inducing an alternative epigenetic program, which triggers loss of cell identity and activation of oncogenic pathways. Overexpression of MYC induces transcriptional repression of lineage-specifying transcription factors, causing decommissioning of luminal-specific enhancers.

View Article and Find Full Text PDF

The evolution of chromatin-based epigenetic cell memory may be driven not only by the necessity for cells to stably maintain transcription programs, but also by the need to recognize signals and allow plastic responses to environmental stimuli. The mechanistic role of the epigenome in adult postmitotic tissues, however, remains largely unknown. In vertebrates, two variants of the Polycomb repressive complex (PRC2-Ezh2 and PRC2-Ezh1) control gene silencing via methylation of histone H3 on Lys27 (H3K27me).

View Article and Find Full Text PDF

Pluripotent stem cells (PSCs) are defined by their self-renewal potential, which permits their unlimited propagation, and their pluripotency, being able to generate cell of the three embryonic lineages. These properties render PSCs a valuable tool for both basic and medical research. To induce and stabilize the pluripotent state, complex circuitries involving signaling pathways, transcription regulators and epigenetic mechanisms converge on a core transcriptional regulatory network of PSCs, thus determining their cell identity.

View Article and Find Full Text PDF

The Polycomb group (PcG) proteins form regulatory complexes that modify the chromatin structure and silence their target genes. Recent works have found that the composition of Polycomb complexes is highly dynamic. Defining the different protein components of each complex is fundamental for better understanding their biological functions.

View Article and Find Full Text PDF