The frontiers of antibacterial materials in the biomedical field are constantly evolving since infectious diseases are a continuous threat to human health. In this work, waste-wool-derived keratin electrospun nanofibers were blended with copper by an optimized impregnation procedure to fabricate antibacterial membranes with intrinsic biological activity, excellent degradability and good cytocompatibility. The keratin/copper complex electrospun nanofibers were multi-analytically characterized and the main differences in their physical-chemical features were related to the crosslinking effect caused by Cu.
View Article and Find Full Text PDFCotton and polyamide 6,6 fabrics coated with chitosan, a natural biopolymer, have been tested against two different bacteria strains: as Gram-positive bacterium and as Gram-negative bacterium. Using the ASTM standard method (Standard Test Method for Determining the Antimicrobial Activity of Antimicrobial Agents Under Dynamic Contact Conditions) for antibacterial testing, the treated fabrics is contacted for 1 h with the bacterial inoculum, the present study aims to investigate the possibility to reach interesting results considering shorter contact times. Moreover, the antibacterial activity of chitosan-treated fibers dyed with a natural dye, , was evaluated since chitosan has an interesting property that favors the attachment of the dye to the fiber (cross-linking ability).
View Article and Find Full Text PDFKeratin is a biocompatible and biodegradable protein as the main component of wool and animal hair fibers. Keratin-based materials support fibroblasts and osteoblasts growth. Keratin has been extracted by sulphitolysis, a green method (no harmful chemicals) with a yield of 38-45%.
View Article and Find Full Text PDFThe development of asymmetric membranes-i.e., matching two fibrous layers with selected composition and morphological properties to mimic both the epidermis and dermis-currently represents one of the most promising strategies to support skin regeneration during the wound healing process.
View Article and Find Full Text PDFBioengineering (Basel)
December 2021
Protein-based nanofibres are commonly used in the biomedical field to support cell growth. For this study, the cell viability of wool keratin-based nanofibres was tested. Membranes were obtained by electrospinning using formic acid, hexafluoroisopropanol, and water as solvents.
View Article and Find Full Text PDFIn response to the nowadays battle against SARS-CoV-2, we designed a new class of high performant filter media suitable to advance the facemask technology and provide new efficient widespread solutions against virus propagation. By means of the electrospinning technology we developed filter media based on polyvinyl alcohol (PVA) nanofibers doped with AgNPs combining three main performance requirements: high air filtration efficiency to capture nanometer-size particles, low airflow resistance essential to ensure breathability and antimicrobial activity to inactivate aerosolized microorganisms. PVA/AgNPs electrospun nanofibers were produced by electrospinning the dispersion of colloidal silver into the PVA water solution.
View Article and Find Full Text PDFPolypyrrole (PPy) nanoparticles (NPs) are used for the coating of materials, such as textiles, with biomedical applications, including wound care and tissue engineering, but they are also promising antibacterial agents. In this work, PPy NPs were used for the spray-coating of textiles with antimicrobial properties. The functional properties of the materials were verified, and their safety was evaluated.
View Article and Find Full Text PDFElectrospinning is gaining increasing interest in the biomedical field as an eco-friendly and economic technique for production of random and oriented polymeric fibers. The aim of this review was to give an overview of electrospinning potentialities in the production of fibers for biomedical applications with a focus on the possibility to combine biomechanical and topographical stimuli. In fact, selection of the polymer and the eventual surface modification of the fibers allow selection of the proper chemical/biological signal to be administered to the cells.
View Article and Find Full Text PDFElectrospinning is the leading technology to fabricate fibrous scaffolds that mimic the architecture of the extracellular matrix of natural tissues. In order to improve the biological response, a consolidated trend involves the blending of synthetic polymers with natural proteins to form protein-rich fibers that include selected biochemical cues able to more actively support in vitro cell interaction. In this study, we compared protein-rich fibers fabricated via electrospinning by the blending of poly ε-caprolactone (PCL) with three different proteins, i.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
September 2019
Antimicrobial textiles can contribute to the fighting against antibiotic resistance pathogenic microorganisms. Polypyrrole is a conjugated polymer that exerts a biocidal action thanks to positive charges on its backbone chain produced during it synthesis. In this work, dispersions of stable polypyrrole nanoparticles were produced by chemical oxidative polymerization at room temperature in water.
View Article and Find Full Text PDFThe use of bioactive proteins such as keratin has been successfully explored to improve the biological interface of scaffolds with cells during the tissue regeneration. In this work, it is optimized the fabrication of nanofibers combining wool keratin extracted by sulfitolysis, with polycaprolactone (PCL) in order to design bicomponent fibrous matrices able to exert a self-adapting pattern of signals-morphological, chemical, or physical-confined at the single fiber level, to influence cell and bacteria interactions. It is demonstrated that the blending of highly polydisperse keratin with PCL (50:50) improves the stability of the electrospinning process, promoting the formation of nanofibers-144.
View Article and Find Full Text PDFPeri-implantitis is a severe condition affecting the success of transmucosal dental implants: tissue healing is severely limited by the inflammatory processes that come about to control homeostasis in the surrounding tissues. The main cause of peri-implantitis is bacterial biofilm infection; gingival fibroblasts play a pivotal role in regulating the inflammatory cascades. A new technology aimed at preventing bacterial colonization of titanium (Ti) implants, and enhancing the spread of gingival fibroblasts, is presented.
View Article and Find Full Text PDFMetal ions are frequently incorporated into crystalline materials to improve their electrochemical properties and to confer new physicochemical properties. Naturally-occurring phosphate apatite, which is formed geologically and in biomineralization processes, has extensive potential applications and is therefore an attractive functional material. In this study, we generate a novel building block for flexible optoelectronics using bio-inspired methods to deposit a layer of photoactive titanium-modified hydroxyapatite (TiHA) nanoparticles (NPs) on conductive polypyrrole(PPy)-coated wool yarns.
View Article and Find Full Text PDFElectrospinning is here used for the first time to prepare nanofibers including a host/guest complex in a keratin/poly(ethylene oxide) matrix. The host is a lipid binding protein and the guest is an insoluble bactericidal molecule, irgasan, bound within the protein internal cavity. The obtained nanofibers, characterized by scanning electron microscopy, exhibit excellent antibacterial activity toward Gram positive and negative bacteria, even with a moderate protein/irgasan cargo.
View Article and Find Full Text PDFCommunicable diseases can be transmitted by contaminated water. Water decontamination process is fundamental to eliminate microorganisms. In this work, cotton gauzes were coated with chitosan using an UV-curing process or cationized by introduction of quaternary ammonium groups and tested, in static and dynamic conditions, as water filter for biological disinfection against both Gram-negative and Gram-positive bacteria.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
September 2012
In this study, nanofibre mats for chemical adsorption of heavy metals were prepared by electrospinning blends of hydrolyzed keratin (HK) and polyamide 6 (PA6) in formic acid. Viscosity measurements of the spinning solutions and morphological analyses of the fracture sections of the same polymer blends cast into films, suggested intermolecular interactions and good compatibility between HK and PA6. The mats made of continuous randomly oriented blend nanofilaments of HK/PA6 50/50 wt, with a mean diameter of about 200 nm, were tested as chromium (VI) ion adsorbents.
View Article and Find Full Text PDFA wool fiber sample was submitted to chemical-free steam explosion in view of potential exploitation of keratin-based industrial and farm wastes. Fiber keratin was converted into a dark-yellow sludge that was submitted to phase separation by filtration, centrifugation, and precipitation of the soluble materials from the supernatant liquid. The resulting products, when compared with the original wool, showed the extent of disruption of the histology structure, reduction of the molecular weight to water-soluble peptides and free amino acids, and change of the structure of the remainder of the protein associated with breaking of disulfide bonds and decomposition of the high-sulfur-content protein fraction.
View Article and Find Full Text PDF