Publications by authors named "Alessio Ugolini"

: Single-agent immune checkpoint inhibitor (IO) therapy is the standard for non-oncogene-addicted advanced non-small cell lung cancer (aNSCLC) with PD-L1 tumor proportion score ≥ 50%. Smoking-induced harm generates high tumor mutation burden (H-TMB) in smoking patients (S-pts), while never-smoking patients (NS-pts) typically have low TMB (L-TMB) and are unresponsive to IO. However, the molecular characterization of NS-pts with H-TMB remains unclear.

View Article and Find Full Text PDF

Patients with metastatic ovarian cancer (OvCa) have a 5-year survival rate of <30% due to the persisting dissemination of chemoresistant cells in the peritoneal fluid and the immunosuppressive microenvironment in the peritoneal cavity. Here, we report that intraperitoneal administration of β-glucan and IFNγ (BI) induced robust tumor regression in clinically relevant models of metastatic OvCa. BI induced tumor regression by controlling fluid tumor burden and activating localized antitumor immunity.

View Article and Find Full Text PDF

Patients with metastatic ovarian cancer (OvCa) have a 5-year survival rate of less than 30% due to persisting dissemination of chemoresistant cells in the peritoneal fluid and the immunosuppressive microenvironment in the peritoneal cavity. Here, we report that intraperitoneal administration of β-glucan and IFNγ (BI) induced robust tumor regression in clinically relevant models of metastatic OvCa. BI induced tumor regression by controlling fluid tumor burden and activating localized antitumor immunity.

View Article and Find Full Text PDF

Immunosuppressive macrophages restrict anti-cancer immunity in glioblastoma (GBM). Here, we studied the contribution of microglia (MGs) and monocyte-derived macrophages (MDMs) to immunosuppression and mechanisms underlying their regulatory function. MDMs outnumbered MGs at late tumor stages and suppressed T cell activity.

View Article and Find Full Text PDF

Purpose: CD137 molecule is expressed by activated lymphocytes, and in patients with cancer identifies the tumor-reactive T cells. In solid tumors, high levels of circulating CD137+ T cells are associated with the clinical response and the disease-free status. Here, we examined the role of the CD137+ T cells in the improvement of patients' selection for immunotherapy treatment.

View Article and Find Full Text PDF

The possible interplay between autoimmunity and cancer is a topic that still needs to be deeply explored. Rheumatoid factors are autoantibodies that are able to bind the constant regions (Fc) of immunoglobulins class G (IgGs). In physiological conditions, their production is a transient event aimed at contributing to the elimination of pathogens as well as limiting a redundant immune response by facilitating the clearance of antibodies and immune complexes.

View Article and Find Full Text PDF

The CD137 receptor (4-1BB, TNF RSF9) is an activation induced molecule expressed by antigen-specific T-cells. The engagement with its ligand, CD137L, is capable of increasing T-cell survival, proliferation, and cytokine production. This allowed to identify the CD137 T-cells as the real tumor-specific activated T-cell population.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most aggressive, malignant primary brain tumor in adults. GBM is notoriously resistant to immunotherapy mainly due to its unique immune microenvironment. High dimensional data analysis reveals the extensive heterogeneity of immune components making up the GBM microenvironment.

View Article and Find Full Text PDF

Background: ICIs have strongly improved the outcome of NSCLC patients. However, primary and secondary resistance occur during treatment in most of the patients, with several of them developing fast progressions. Autoantibodies can be related with a dysfunctional immune system, although their association with immune-based anti-cancer therapies has never been investigated.

View Article and Find Full Text PDF

Patients with non-small cell lung cancer (NSCLC) have been shown to benefit from the introduction of anti-PD1 treatment. However, not all patients experience tumor regression and durable response. The identification of a string of markers that are direct or indirect indicators of the immune system fitness is needed to choose optimal therapeutic schedules in the management of NSCLC patients.

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma (GBM) is a highly aggressive brain cancer that presents significant challenges for treatment due to its immunosuppressive environment primarily influenced by tumor-associated macrophages (TAMs), particularly CD163 cells.
  • A study used immunohistochemical analysis to evaluate immune biomarkers in tumor core and surrounding areas from GBM patients, revealing that while immunosuppressive markers (like IDO and PDL-1) were prevalent in the tumor core, the surrounding area showed less suppression.
  • The findings suggest that targeting both immunosuppressive mechanisms and T-cell exhaustion in the tumor periphery may enhance anti-tumor immunity, highlighting the potential for more effective immunotherapy strategies in GBM.
View Article and Find Full Text PDF

DCs are a critical component of immune responses in cancer primarily due to their ability to cross-present tumor-associated antigens. Cross-presentation by DCs in cancer is impaired, which may represent one of the obstacles for the success of cancer immunotherapies. Here, we report that polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) blocked cross-presentation by DCs without affecting direct presentation of antigens by these cells.

View Article and Find Full Text PDF